
ADVANCED DATA STRUCTURES 
AND ALGORITHMS 

1 



Optimization Problems-Graph 

         Search Algorithms   

• Generic Search 

• Breadth First Search 

• Dijkstra's Shortest Paths Algorithm 

• Depth First Search 

• Linear Order 

2 



Graph 

a 

c 

b Node ~ city or computer 

Edge ~ road or network 

Undirected or Directed 

A surprisingly large number of problems  

in computer science can be expressed  

as a graph theory problem.  

3 



Generic Search-Graph Search 

Specification: Reachability-from-single-source s 

•<preCond>:  

    The input is a graph G  

(either directed or undirected)  

         and a source node s.  

•<postCond>:  

  Output all the nodes u that are  

  reachable by a path in G from s.  

4 



Graph Search 

Basic Steps: 

s 
u 

• Suppose you know that u is reachable from s & there is an edge 

from u to v 

• You know that v is reachable from s 

• Build up a set of reachable nodes. 

 

v 

5 



6 



Graph Search 

Ending Initial Conditions Make Progress 

Maintain Loop Inv Define Exit Condition Define Step 

Define Measure of Progress Define Loop Invariants Define Problem 

km

79 km  
to school 

Exit 

Exit 

79 km 75 km 

Exit 

Exit 

0 km Exit 

7 



Breadth First Search(BFS) 

       <preCond> &<postCond> 

Algorithm 

8 



BFS 

What order are the nodes found? 

So far, the nodes have been found in order of length from s.  

<postCond>: Finds a shortest path from s 

to each node v and its length. 

To prove path is shortest: 

Prove there is a path of this length. 

Prove there are no shorter paths. 

Give a path 

(witness) 

9 



Basic Steps: 

s 
u 

• The shortest path to u has length d & there is an edge from u to v 

• There is a path to v with length d+1. 

 

 

v 

BFS 

10 



BFS 

• What order are the nodes found? 

• So far, the nodes have been found in order of length from s. 

• <postCond>: 

• Finds a shortest path from s to each node v and its length. 

• Prove there are no shorter paths. 

• When we find v, we know  

there isn't a shorter path to it because ? 

• Otherwise, we would have found it already. 

 

 

 

 

 

 

 

11 



BFS 

Data structure for storing tree: 

• For each node v, store (v) to be parent of v. 

12 



Basic Steps: 

s 
u 

v 

Parent of v is 

(v) 

(v) = u. 

BFS 

Path to u & there is an edge from u to v 

  

13 



14 



Dijkstra's Shortest-Weighted Paths 

• Specification: Dijkstra's Shortest-Weighted Paths                    

• Reachability-from-single-source s 

•<preCond>:  

    The input is a graph G  

(either directed or undirected)  

    with positive edge weights 

     and a source node s.  

•<postCond>:  

 Finds a shortest weighted path from s 

  to each node v and its length. 

15 



Dijkstra's Shortest-Weighted Paths 

s 

u 

v 

100 

1 
1 

1 

1 
w 

r 

• Length of shortest path from s to u? 

16 



• So far, the nodes have been found in order of length from 

s. 

• Is the same true for Dijkstra's Algorithm? 

BFS 

s 

u 

v 

100 

1 
1 

1 

1 
w 

r 

Which node is found first? 

17 



 

• So far, the nodes have been found in order of length from s. 

• Is the same true for Dijkstra's Algorithm? 

 

s 

u 

v 

100 

1 
1 

1 

1 
w 

r 

• Which node is found first? 

• It has the longest path from s. 

BFS 

18 



• So far, the nodes have been found in order of length from s. 

handled 

• In what order do we handle the foundNotHandled nodes? 

 

s 

u 

v 

100 

1 
1 

1 

1 
w 

r 

Dijkstra's 

Handle node that “seems” to be closest to s. 

19 



Dijkstra's 

 
• So far, the nodes have been handled in order of length from s.  

<postCond>: 

• Finds a shortest weighted path  

from s to each node v and its length. 

• To prove path is shortest: 

• Prove there is a path of this length.  

• Prove there are no shorter paths. 

• Give a path (witness) 

 

 

 

 

 
20 



Dijkstra's 

 • So far, the nodes have been handled in order of length from s.  

• <postCond>: 

• Finds a shortest weighted path  

from s to each node v and its length. 

• To prove path is shortest: 

• Prove there is a path of this length.  

• Prove there are no shorter paths. 

• When we handle v, we know  

there isn't a shorter path to it because? 

 

 

 

 

 

 

 

21 



Dijkstra's 

Handle node that “seems” to be closest to s. 

Need to keep approximate shortest distances. 

•Path that we have “seen so far” will   

 be called handled paths. 

•Let d(v) the length of the shortest  

  such path to v.  

Basic Steps: 

u 
v s 

Which is 
further? 

22 



Basic Steps: 

u 

Dijkstra's 

w<u,v> 

v 
s 

The shortest of handled paths to v has length d(v) 

• The shortest of handled paths to u has length d(u) & there is an edge 

from u to v 

• The shortest known path to v has length 

   min( d(v), d(u)+w<u,v> ). 

Updating d(u).  

23 



…
 

24 



Dijkstra's 

25 



Dijkstra's 

26 



Depth First Search 

• Breadth first search makes a lot of sense for dating in general 

actually.  

• It suggests dating a bunch of people casually before getting 

serious rather than having a series of five year relationships.  

27 



28 



Recursive 

 Depth First  

Search 

29 



30 



Linear Order of a Partial Order 

underwear 

pants 

socks 

shoes 

underwear 

pants 

socks 

shoes 

socks  

underwear 

pants 

shoes 

31 



Linear Order 

underwear 

pants 

socks 

shoes 

? 

32 



Linear Order 

a 

b h 

c i 

d j 

e k 

f l 

g 

<preCond>:  

 A Directed Acyclic 

Graph(DAG) 

<postCond>: 

Find one valid linear order 

…..  l 

Algorithm:  

•Find a sink 

•Put it last in order. 

•Delete & Repeat 

 

? 

33 



Linear Order 

a 

b h 

c i 

d j 

e k 

f l 

g 

<preCond>:  

A Directed Acyclic Graph(DAG) 

<postCond>: 

Find one validlinear order 

…..  l 

Algorithm:  
•Find a sink. 
•Put it last in  
  order. 
•Delete & 
  Repeat 
 

(n) 
(n2) 

34 



Optimization Problems 

•Ingredients:  

•Instances: The possible inputs to the  

  problem.   

•Solutions for Instance: Each instance  

  has an exponentially large set of  

  solutions.   

•Cost of Solution: Each solution has an  

  easy to compute cost or value.   

•Specification  

•Preconditions: The input is one instance. 

•Postconditions: An valid solution with  

 optimal cost. (minimum or maximum) 

Network Flow & Linear Programming  

35 



•Instance:  

•A Network is a directed graph G  

•Edges represent pipes that carry   

 flow 

•Each edge <u,v> has a maximum 

 capacity c<u,v> 

•A source node s out of which flow  

 leaves 

•A sink node t into which flow arrives 

•Goal: Max Flow 

 

Network Flow 

36 



Network Flow 

• For some edges/pipes, it is not clear which direction the flow 

should go  

in order to maximize the flow from s to t. 

• Hence we allow flow in both directions. 

•Solution:  

• The amount of flow F<u,v> through each edge. 

• Flow F<u,v> can't exceed capacity c<u,v>. 

• No leaks, no extra flow. 

  For each node v: flow in = flow out 

              u F<u,v> = w F<v,w> 

37 



- v F<v,s> 

• Value of Solution:  

• Flow from s into the network 

–         minus flow from the network back into s. 

–          rate(F) = u F<s,u> 

• Goal:  Max Flow 

 

38 



•Value Solution C=<U,V>:  

 cap(C) = how much can flow from U to V 

            = uU,vV c<u,v> 

Min Cut 

s 

t 

U 

V 

u 

v 

Goal: Min Cut 

39 



Max Flow = Min Cut 

• Theorem: 
• For all Networks MaxF rate(F) = MinC cap(C) 

• Prove:  F,C    rate(F)  cap(C) 

• Prove:  flow F, alg either 

• finds a better flow F 

• or finds cut C such that rate(F) = cap(C) 

• Algotiyhm stops with an F and C for which rate(F) = cap(C) 

• F witnesses that the optimal flow can't be less 

• C witnesses that it can't be more. 
 

 

40 



An Application: Matching 

Sam Mary 

Bob Beth 

John Sue 

Fred Ann 

Who likes whom? 

Who should be matched with whom? 

so as many as possible matched 

and nobody matched twice? 

 

3 matches 

Can we do better? 

4 matches 

 

41 



An Application: Matching 

s t 

c<s,u> = 1 

•Total flow out of u = flow into u  1 

•Boy u matched to at most one girl. 

1 

c<v,t> = 1 

•Total flow into v = flow out of v  1 

•Girl v matched to at most one boy. 

1 

u v 

42 



Hill Climbing 

Problems: 

Can our Network Flow  

Algorithm get stuck  

in a local maximum? 

Local Max 

Global Max 

No! 

43 



Hill Climbing 

Problems: 

Running time? 

If you take small step, 

could be exponential time. 

44 



Hill Climbing 

Problems: 

Running time? 

 

•If each iteration you take the biggest   

  step possible, 

•Algorithm is poly time 

• in number of nodes  

• and number of bits in capacities. 

• If each iteration you take path with the  

   fewest edges 

•Algorithm is poly time  

•in number of nodes 

45 



Taking the biggest step possible 

46 



Linear Programming 

47 



48 



Primal 

Dual 

49 



Linear Programming 

Linear Program:  
• An optimization problem whose constraints and cost function are 

linear functions 
• Goal: Find a solution which optimizes the cost. 
E.g. 
Maximize Cost Function :  
21x1 - 6x2 – 100x3 - 100x4  
 
Constraint Functions: 
5x1 + 2x2 +31x3 - 20x4   21 
1x1 - 4x2 +3x3 + 10x1 ³ 56 
6x1 + 60x2 - 31x3 - 15x4  200 
….. 

 

50 



Primal-Dual Hill Climbing 

Mars settlement has hilly landscape 

and many layers of roofs. 

Primal Problem:  

•Exponential # of locations to stand. 

•Find a highest one. 

Dual problem: 

•Exponential # of roofs. 

•Find a lowest one. 

Prove: 

•Every roof is above every location to  

  stand. 

          R  L height(R)  height(L)  

               height(Rmin)  height(Lmax)  

• Is there a gap? 

 
51 



• Prove: 

• For every location to stand either: 

• the alg takes a step up  or 

• the alg gives a reason that explains why not 

  by giving a ceiling of equal height. 

–  i.e.  L [ L’ height(L’)  height(L)    or 

                  R  height(R) = height(L)] 

• But  R  L height(R)  height(L)  

 

 

52 



Recursive Backtracking 

• The brute force algorithm for an optimization problem is to simply 

compute the cost or value of each of the exponential number of 

possible solutions and return the best. 

• A key problem with this algorithm is that it takes exponential time.  

• Another (not obviously trivial) problem is how to write code that 

enumerates over all possible solutions. 

• Often the easiest way to do this is recursive backtracking. 

53 



An Algorithm as a Sequence of Decisions: 

• An algorithm for finding an optimal solution for your instance 

must make a sequence of small decisions about the solution 

• “Do we include the first object in the solution or not?”  

• “Do we include the second?” 

• “The third?” . . . , or “At the first fork in the road, do we go 

left or right?” 

54 



• “At the second fork which direction do we go?” “At the 

third?” . . . .  

• As one stack frame in the recursive algorithm, our task is to 

deal only with the first of these decisions.  

• A recursive friend will deal with the rest 

 

55 



Searching for the Best Animal 

• Searching through a large set of objects, say for the best 

animal at the zoo. 

• we break the search into smaller searches, each of which we 

delegate to a friend.  

• We might ask one friend for the best vertebrate and another for 

the best invertebrate.  

• We will take the better of these best as our answer.  

• This algorithm is recursive.  

56 



• The friend with the vertebrate task asks a friend to find the best 

mammal, another for the best bird, and another for the best reptile. 

A Classification Tree of Solutions:  

• This algorithm unwinds into the tree of stack frames that directly 

mirrors the taxonomy tree that classifies animals.  

• Each solution is identified with a leaf. 

 

57 



 
Classification Tree of Animals 

 

 

58 



The Little Bird Abstraction: 

• A little bird abstraction to help focus on two of the most difficult 
and creative parts of designing a recursive backtracking 
algorithm. 

A Flock of Stupid Birds vs.wise Little Bird: 

A Flock of Stupid Birds: 

• whether the optimal solution is a mammal, a bird, or a reptile has 
K different answers 

• Giving her the benefit of doubt, we ask a friend to give us the 
optimal solution from among those that are consistent with this 
answer.  

 

59 



 

• At least one of these birds must have been telling us the truth. 

 Wise Little Bird: 

• If little bird answers correctly, designing an algorithm would be a 

lot easier 

• Ask the little bird “Is the best animal a bird, a mammal, a reptile, or 

a fish?” 

• Little Bird tells us a mammal. 

• Just ask our friend for the best mammal. 

• Trusting the little bird and the friend, we give this as the best 

animal. 

60 



Developing a Recursive Backtracking Algorithm 

Objectives: 

• Understand backtracking algorithms and use them to solve 

problems 

• Use recursive functions to implement backtracking algorithms 

• How the choice of data structures can affect the efficiency of a 

program? 

 

61 



Backtracking 

• Backtracking 

– A strategy for guessing at a solution and backing up when an 
impasse is reached 

• Recursion and backtracking can be combined to solve problems 

• Eight-Queens Problem 

– Place eight queens on the chessboard so that no queen can 
attack any other queen 

62 



The Eight Queens Problem 

• One strategy: guess at a solution 

– There are 4,426,165,368 ways to arrange 8 queens on a 
chessboard of 64 squares 

• An observation that eliminates many arrangements from 
consideration 

– No queen can reside in a row or a column that contains 
another queen 

• Now: only 40,320 (8!) arrangements of queens to be 
checked for attacks along diagonals 

63 



• Providing organization for the guessing strategy 

– Place queens one column at a time 

– If you reach an impasse, backtrack to the previous 

column 

A solution to the Eight Queens problem 

64 



The Eight Queens Problem 

• A recursive algorithm that places a queen in a column  

– Base case 

• If there are no more columns to consider 

–You are finished 

– Recursive step 

• If you successfully place a queen in the current column 

–Consider the next column 

• If you cannot place a queen in the current column 

–You need to backtrack 

65 



The Eight Queens Problem 

a)Five queens that cannot attack each other, 

  but that can attack all of column 6;  

b)Backtracking to column 5 to try another  

   square for the queen; 

c)Backtracking to column 4 to try another  

   square for the queen and then considering  

   column 5 again 

66 



Pruning Branches 

• The typical reasons why an entire branch of the solution 
classification tree can be pruned off. 

Invalid Solutions: 

• It happens partway down the tree the algorithm has already received 
enough information about the solution 

• Then it determine that it contains a conflict or defect making any 
such solution invalid. 

• The algorithm can stop recursing at this point and backtrack.  

• This effectively prunes off the entire subtree of solutions rooted at 
this node in the tree. 

67 



 

No Highly Valued Solutions: 

• The algorithm arrives at the root of a subtree, it might realize that 

no solutions within this subtree are rated sufficiently high to be 

optimal 

• Perhaps because the algorithm has already found a solution 

probably better than all of these.  

• Again, the algorithm can prune this entire subtree from its search. 

68 



Greedy Algorithms: 

• Greedy algorithms are effectively recursive backtracking 

algorithms with extreme pruning. 

• Whenever the algorithm has a choice as to which little bird’s 

answer to take 

• Then it looks best according to some greedy criterion. 

Modifying Solutions: 

• Modifying any possible solution that is not consistent with the 

latest choice into onethat has at least as good value and is 

consistent with this choice. 

69 



Satisfiability 

• A famous optimization problem is called satisfiability. 

• The recursive backtracking algorithm is referred to as the 

Davis–Putnam algorithm.  

• An example of an algorithm whose running time is exponential 

for worst case inputs 

 

70 



Satisfiability Problem 

Instances: 

• An instance (input) consists of a set of constraints on the 

assignment to the binary variables x1, x2, . . . , xn.  

• A typical constraint might be x1 or x3 or x8, equivalently that either 

x1 is true, x3 is false, or x8 is true. 

Solutions:  

• Each of the 2n assignments is a possible solution.  

• An assignment is valid for the given instance if it satisfies all of the 

constraints. 

71 



 

Measure of Success: 

•  An assignment is assigned the value one if it satisfies all of the 

constraints, and the value zero otherwise. 

Goal:  

• Given the constraints, the goal is to find a satisfying assignment. 

 

72 



 

73 



 

Running Time: 

• If no pruning is done, then the running time is (2n), as all 2n 

assignments are tried. 

• Considerable pruning needs to occur to make the algorithm 

polynomial-time. 

• Certainly in the worst case, the running time is 2(n). 

74 


