ADVANCED DATA STRUCTURES AND ALGORITHMS

Optimization Problems-Graph Search Algorithms

- Generic Search
- Breadth First Search
- Dijkstra's Shortest Paths Algorithm
- Depth First Search
- Linear Order

Graph

Undirected or Directed
A surprisingly large number of problems in computer science can be expressed as a graph theory problem.

Generic Search-Graph Search

Specification: Reachability-from-single-source s
$-<$ preCond>:
The input is a graph G
(either directed or undirected) and a source node s.

- <postCond>:

Output all the nodes u that are
reachable by a path in G from s.

Graph Search

Basic Steps:

- Suppose you know that u is reachable from s \& there is an edge from u to v
- You know that v is reachable from s
- Build up a set of reachable nodes.
algorithm Search (G, s)
$\langle p r e-c o n d\rangle: G$ is a (directed or undirected) graph and s is one of its nodes.
〈post-cond): The output consists of all the nodes u that are reachable by
begin
foundH andled $=\emptyset$
foundN ot Handled $=\{s\}$
loop
〈loop-invariant): See above.
exit when foundNot Handled $=\emptyset$
let u be some node from foundNotHandled for each v connected to u
if v has not previously been found then add v to foundNotHandled
end if
end for
move u from foundNotHandled to foundHandled
end loop
return foundHandled
end algorithm

Graph Search

Define Problem	Define Loop Invariants	Define Measure of Progress
Define Step	Define Exit Condition	Maintain Loop Inv
Make Progress		

Breadth First Search(BFS)

<preCond> \& <postCond>

BFS

What order are the nodes found?
So far, the nodes have been found in order of length from s.
<postCond>:
Finds a shortest path from s to each node v and its length.

To prove path is shortest:
Prove there is a path of this length.
Prove there are no shorter paths.
$\longleftarrow \quad$ Give a path (witness)

BFS

Basic Steps:

- The shortest path to u has length $d \&$ there is an edge from u to v
- There is a path to v with length $d+1$.

BFS

- What order are the nodes found?
- So far, the nodes have been found in order of length from s.
- <postCond>:
- Finds a shortest path from s to each node v and its length.
- Prove there are no shorter paths.
- When we find v, we know there isn't a shorter path to it because?
- Otherwise, we would have found it already.

BFS

Data structure for storing tree:

- For each node v, store $\pi(v)$ to be parent of v.

BFS

Basic Steps:

Path to $\mathrm{u} \&$ there is an edge from u to v

Parent of v is

$$
\pi(v)=u .
$$

algorithm ShortestPath (G, s)
(pre-cond): G is a (directed or undirected) graph and s is one of its nodes.
$\langle p o s t-c o n d\rangle: \pi$ specifies a shortest path from s to each node of G and d
begin specifies their lengths.
foundHandled $=\emptyset$
foundNotHandled $=\{s\}$
$d(s)=0, \pi(s)=\epsilon$
loop
(Loop-invariant): See above.
exit when foundNotHandled $=0$
let u be the node in the front of the queve foundNotHandled
for each v connected to u
if v has not previously been found then
add v to foundNotHandled

$$
d(v)=d(u)+1
$$

$$
\pi(v)=u
$$

end $i f$
end for
move u from foundNotHandled to foundHandled
end loop
(for unfound $v, d(v)=\infty$)
return $\langle d, \pi\rangle$
end algorithm

Dijkstra's Shortest-Weighted Paths

- Specification: Dijkstra's Shortest-Weighted Paths
- Reachability-from-single-source s
-<preCond>:
The input is a graph G
(either directed or undirected)
with positive edge weights and a source node s.
- <postCond>:

Finds a shortest weighted path from s
to each node v and its length.

Dijkstra's Shortest-Weighted Paths

- Length of shortest path from s to u ?

v

BFS

- So far, the nodes have been found in order of length from S.
- Is the same true for Dijkstra's Algorithm?

v
Which node is found first?

BFS

- So far, the nodes have been found in order of length from s.
- Is the same true for Dijkstra's Algorithm?

v
- Which node is found first?
- It has the longest path from s.

Dijkstra's

- So far, the nodes have been found in order of length from s. handled
- In what order do we handle the foundNotHandled nodes?

v
Handle node that "seems" to be closest to s.

Dijkstra's

- So far, the nodes have been handled in order of length from s.
<postCond>:
- Finds a shortest weighted path from s to each node v and its length.
- To prove path is shortest:
- Prove there is a path of this length.
- Prove there are no shorter paths.
- Give a path (witness)

Dijkstra's

- So far, the nodes have been handled in order of length from s.
- <postCond>:
- Finds a shortest weighted path from s to each node v and its length.
- To prove path is shortest:
- Prove there is a path of this length.
- Prove there are no shorter paths.
- When we handle v, we know there isn't a shorter path to it because?

Basic Steps:

Dijkstra's

Handle node that "seems" to be closest to s.

Need to keep approximate shortest distances.
-Path that we have "seen so far" will be called handled paths.
-Let $d(v)$ the length of the shortest such path to v.

Dijkstra's

Basic Steps:
 $\sqrt{2}$ Updating $d(u)$.

The shortest of handled paths to v has length $d(v)$

- The shortest of handled paths to u has length $d(u) \&$ there is an edge from u to v
- The shortest known path to v has length $\min \left(d(v), d(u)+w_{<u, v>}\right)$.

```
algorithm ShortestWeightedPath ( \(G, s\) )
```

$\langle\boldsymbol{p r e}-\boldsymbol{c o n d}\rangle: G$ is a weighted (directed or undirected) graph and s is one of
its nodes.
\langle post-cond $\rangle: \pi$ specifies a shortest weighted path from s to each node of G
and d specifies their lengths.
begin
$d(s)=0, \pi(s)=\epsilon$
for other $v, d(v)=\infty$ and $\pi(v)=n i l$
handled $=\emptyset$
notHandled $=$ priority queue containing all nodes. Priorities given by $d(v)$.
loop
\langle loop-invariant \rangle : See above.
exit when not Handled $=\emptyset$
let u be a node from not Handled with smallest $d(u)$
for each v connected to u

```
            foundPathLength \(=d(u)+w_{(u, v)}\)
            if \(d(v)>\) foundPathLength then
                \(d(v)=\) foundPath Length
                        (update the notHandled priority queue)
                        \(\pi(v)=u\)
```

 end if
 end for
 move \(u\) from not Handled to handled
 end loop
 return \(\langle d, \pi\rangle\)
 end algorithm

Dijkstra's

Handled d values

Dijkstra's

Handled d values

Depth First Search

- Breadth first search makes a lot of sense for dating in general actually.
- It suggests dating a bunch of people casually before getting serious rather than having a series of five year relationships.
algorithm DepthFirstSearch (G, s)
$\langle\boldsymbol{p r e}-$ cond $\rangle: G$ is a (directed or undirected) graph and s is one of its nodes.
$\langle\boldsymbol{p o s t}-\operatorname{con} d\rangle:$ The output is a depth-first search tree of G rooted at s.
begin
foundH andled $=\emptyset$
foundN of Handled $=\{\langle s, 0\rangle\}$
loop
\langle loop-invariant〉: See above.
exit when foundNotHandled $=\emptyset$
pop $\langle u, i\rangle$ off the stack foundNotHandled if u has an $(i+1)^{s t}$ edge $\langle u, v\rangle$
push $\langle u, i+1\rangle$ onto foundNotHandled
if v has not previously been found then
$\pi(v)=u$
$\langle u, v\rangle$ is a tree edge
push $\langle v, 0\rangle$ onto foundNotHandled
else if v has been found but not completely handled then $\langle u, v\rangle$ is a back edge
else (v has been completely handled)
$\langle u, v\rangle$ is a forward or cross edge
end if
else
move u to foundHandled
end if
end loop
return foundHandled
end algorithm
algorithm DepthFirstSearch (s)

Recursive Depth First Search

First Friend

Second Friend

Third Friend

unchanged

Our Stack Frame

Iterative Alg
Stack.
Handled
\{s=1\}
\{1,2,3,4,5,6\}
\{1,2\}
6,5,4,3
$\{1,2,7,8\} \quad 6,5,4,3$
\{1,2\}
6,5,4,3,8,7
\{1,2,9\}
6,5,4,3,8,7
6.5.4.3.8.7.9.2.1

Recursive Stack Frames

Types of Edges
Tree edges
Back edges
Forward edges
Cross edges

Linear Order of a Partial Order

Linear Order

Linear Order

Linear Order

<preCond>:
A Directed Acyclic Graph(DAG) <postCond>:
Find one validlinear order

Algorithm:
-Find a sink.
-Put it last in order.
$\Theta(n)$

- Delete \&

Repeat

Network Flow \& Linear Programming

Optimization Problems
-Ingredients:
-Instances: The possible inputs to the problem.
-Solutions for Instance: Each instance has an exponentially large set of solutions.
-Cost of Solution: Each solution has an easy to compute cost or value.
-Specification
-Preconditions: The input is one instance.
-Postconditions: An valid solution with optimal cost. (minimum or maximum)

Network Flow

-Instance:

- A Network is a directed graph G
-Edges represent pipes that carry flow
-Each edge $\langle u, v>$ has a maximum
capacity $c_{\langle u, v\rangle}$
- A source node s out of which flow
leaves
- A sink node t into which flow arrives
-Goal: Max Flow

Network Flow

- For some edges/pipes, it is not clear which direction the flow should go
in order to maximize the flow from s to t.
- Hence we allow flow in both directions.
-Solution:
- The amount of flow $\mathrm{F}_{\langle u, v\rangle}$ through each edge.
- Flow $\mathrm{F}_{\langle\mathrm{u}, \mathrm{v}\rangle}$ can't exceed capacity $\mathrm{c}_{\langle\mathrm{u}, \mathrm{v}\rangle}$.
- No leaks, no extra flow.

For each node v: flow in = flow out

$$
\sum_{u} F_{\langle u, v\rangle}=\sum_{w} F_{\langle v, w\rangle}
$$

- Value of Solution:
- Flow from s into the network
- minus flow from the network back into s.
$-\quad \operatorname{rate}(\mathrm{F})=\sum_{\mathrm{u}} \mathrm{F}_{\langle\mathrm{s}, \mathrm{u}\rangle}$
- Goal: Max Flow $-\sum_{v} F_{<v, s\rangle}$

Min Cut

-Value Solution $\mathrm{C}=\langle\mathrm{U}, \mathrm{V}\rangle$:
$\operatorname{cap}(\mathrm{C})=$ how much can flow from U to V

$$
=\sum_{u \in U, v \in \mathrm{~V}} \mathrm{c}_{\langle\mathrm{u}, \mathrm{v}\rangle}
$$

Goal: Min Cut

Max Flow $=$ Min Cut

- Theorem:
- For all Networks $\mathrm{Max}_{\mathrm{F}}$ rate(F) $=\mathrm{Min}_{\mathrm{C}} \mathrm{cap}(\mathrm{C})$
- Prove: $\forall \mathrm{F}, \mathrm{C} \quad \operatorname{rate}(\mathrm{F}) \leq \operatorname{cap}(\mathrm{C})$
- Prove: \forall flow F , alg either
- finds a better flow F
- or finds cut C such that $\operatorname{rate}(\mathrm{F})=\operatorname{cap}(\mathrm{C})$
- Algotiyhm stops with an F and C for which $\operatorname{rate}(\mathrm{F})=\operatorname{cap}(\mathrm{C})$
- F witnesses that the optimal flow can't be less
- C witnesses that it can't be more.

An Application: Matching

Who likes whom?
Who should be matched with whom?
so as many as possible matched and nobody matched twice?

An Application: Matching

$c_{\langle s, u\rangle}=1$
-Total flow out of $u=$ flow into $u \leq 1$

- Boy u matched to at most one girl.
$c_{\langle v, t\rangle}=1$
- Total flow into $v=$ flow out of $v \leq 1$
-Girl v matched to at most one boy.

Hill Climbing

Problems:

Can our Network Flow Algorithm get stuck in a local maximum?

No!
Global Max

SL Local Max

Hill Climbing

Problems:

Running time?
If you take small step, could be exponential time.

Hill Climbing

Problems:
Running time?
-If each iteration you take the biggest step possible,

- Algorithm is poly time
- in number of nodes
- and number of bits in capacities.
- If each iteration you take path with the fewest edges
- Algorithm is poly time -in number of nodes

Taking the biggest step possible

```
algorithm LargestShortestWVeight (G,s,t)
(pre-comd): G is a weighted directed graph. s is the source node. t is the
            sink.
(post-cond): P specifies a path from s to t whose smallest edge weight is
begin
    Sort the edges by weight from largest to smallest
    G}\mp@subsup{G}{}{\prime}=\mathrm{ graph with no edges
    mark s reachable
    loop
        (loop-invariant): Every node reachable from s in G}\mp@subsup{G}{}{\prime}\mathrm{ is
                marked reachable.
            exit when t is reachable
            \langleu,v\rangle}=\mathrm{ the next largest weighted edge in G
            Add }\langleu,v\rangle\mathrm{ to }\mp@subsup{G}{}{\prime
            if(u}\mathrm{ is marked reachable and v}\mathrm{ is not ) then
                                    Do a depth first search from v marking all reachable nodes
                                    not marked before.
                end if
    end loop
    P= path from s to t in G
    return(P)
end algorithm
```


Linear Programming

Linear Programming

Linear Program:

- An optimization problem whose constraints and cost function are linear functions
- Goal: Find a solution which optimizes the cost.
E.g.

Maximize Cost Function :
$21 \mathrm{x}_{1}-6 \mathrm{x}_{2}-100 \mathrm{x}_{3}-100 \mathrm{x}_{4}$
Constraint Functions:
$5 x_{1}+2 x_{2}+31 x_{3}-20 x_{4} \leq 21$
$1 \mathrm{x}_{1}-4 \mathrm{x}_{2}+3 \mathrm{x}_{3}+10 \mathrm{x}_{1}{ }^{3} 56$
$6 x_{1}+60 x_{2}-31 x_{3}-15 x_{4} \leq 200$

Primal-Dual Hill Climbing

Mars settlement has hilly landscape and many layers of roofs.
Primal Problem:
-Exponential \# of locations to stand.
-Find a highest one.
Dual problem:
-Exponential \# of roofs.

- Find a lowest one.

Prove:
-Every roof is above every location to stand.

$$
\begin{aligned}
& \forall R \forall L \operatorname{height}(R) \geq \operatorname{height}(L) \\
& \quad \Rightarrow \operatorname{height}\left(R_{\min }\right) \geq \operatorname{height}\left(L_{\max }\right)
\end{aligned}
$$

- Is there a gap?
- Prove:
- For every location to stand either:
- the alg takes a step up or
- the alg gives a reason that explains why not by giving a ceiling of equal height.
- i.e. $\forall L\left[\exists L ' \operatorname{height}\left(L^{\prime}\right) \geq \operatorname{height}(L) \quad\right.$ or $\exists R \operatorname{height}(R)=\operatorname{height}(L)]$
- But $\forall R \forall L \operatorname{height}(R) \geq \operatorname{height}(L)$

Recursive Backtracking

- The brute force algorithm for an optimization problem is to simply compute the cost or value of each of the exponential number of possible solutions and return the best.
- A key problem with this algorithm is that it takes exponential time.
- Another (not obviously trivial) problem is how to write code that enumerates over all possible solutions.
- Often the easiest way to do this is recursive backtracking.

An Algorithm as a Sequence of Decisions:

- An algorithm for finding an optimal solution for your instance must make a sequence of small decisions about the solution
- "Do we include the first object in the solution or not?"
-"Do we include the second?"
- "The third?". . . , or "At the first fork in the road, do we go left or right?"
- "At the second fork which direction do we go?" "At the third?". . .
- As one stack frame in the recursive algorithm, our task is to deal only with the first of these decisions.
- A recursive friend will deal with the rest

Searching for the Best Animal

- Searching through a large set of objects, say for the best animal at the zoo.
- we break the search into smaller searches, each of which we delegate to a friend.
- We might ask one friend for the best vertebrate and another for the best invertebrate.
- We will take the better of these best as our answer.
- This algorithm is recursive.
- The friend with the vertebrate task asks a friend to find the best mammal, another for the best bird, and another for the best reptile.

A Classification Tree of Solutions:

- This algorithm unwinds into the tree of stack frames that directly mirrors the taxonomy tree that classifies animals.
- Each solution is identified with a leaf.

Classification Tree of Animals

The Little Bird Abstraction:

- A little bird abstraction to help focus on two of the most difficult and creative parts of designing a recursive backtracking algorithm.
A Flock of Stupid Birds vs.wise Little Bird:

A Flock of Stupid Birds:

- whether the optimal solution is a mammal, a bird, or a reptile has K different answers
- Giving her the benefit of doubt, we ask a friend to give us the optimal solution from among those that are consistent with this answer.
- At least one of these birds must have been telling us the truth.

Wise Little Bird:

- If little bird answers correctly, designing an algorithm would be a lot easier
- Ask the little bird "Is the best animal a bird, a mammal, a reptile, or a fish?"
- Little Bird tells us a mammal.
- Just ask our friend for the best mammal.
- Trusting the little bird and the friend, we give this as the best animal.

Developing a Recursive Backtracking Algorithm

Objectives:

- Understand backtracking algorithms and use them to solve problems
- Use recursive functions to implement backtracking algorithms
- How the choice of data structures can affect the efficiency of a program?

Backtracking

- Backtracking
- A strategy for guessing at a solution and backing up when an impasse is reached
- Recursion and backtracking can be combined to solve problems
- Eight-Queens Problem
- Place eight queens on the chessboard so that no queen can attack any other queen

The Eight Queens Problem

- One strategy: guess at a solution
- There are $4,426,165,368$ ways to arrange 8 queens on a chessboard of 64 squares
- An observation that eliminates many arrangements from consideration
- No queen can reside in a row or a column that contains another queen
- Now: only 40,320 (8!) arrangements of queens to be checked for attacks along diagonals
- Providing organization for the guessing strategy
- Place queens one column at a time
- If you reach an impasse, backtrack to the previous column

A solution to the Eight Queens problem

The Eight Queens Problem

- A recursive algorithm that places a queen in a column
- Base case
- If there are no more columns to consider
- You are finished
- Recursive step
- If you successfully place a queen in the current column - Consider the next column
- If you cannot place a queen in the current column
- You need to backtrack

The Eight Queens Problem

(a)

(b)

(c)
a)Five queens that cannot attack each other, but that can attack all of column 6;
b)Backtracking to column 5 to try another square for the queen;
c)Backtracking to column 4 to try another square for the queen and then considering column 5 again

Pruning Branches

- The typical reasons why an entire branch of the solution classification tree can be pruned off.

Invalid Solutions:

- It happens partway down the tree the algorithm has already received enough information about the solution
- Then it determine that it contains a conflict or defect making any such solution invalid.
- The algorithm can stop recursing at this point and backtrack.
- This effectively prunes off the entire subtree of solutions rooted at this node in the tree.

No Highly Valued Solutions:

- The algorithm arrives at the root of a subtree, it might realize that no solutions within this subtree are rated sufficiently high to be optimal
- Perhaps because the algorithm has already found a solution probably better than all of these.
- Again, the algorithm can prune this entire subtree from its search.

Greedy Algorithms:

- Greedy algorithms are effectively recursive backtracking algorithms with extreme pruning.
- Whenever the algorithm has a choice as to which little bird's answer to take
- Then it looks best according to some greedy criterion.

Modifying Solutions:

- Modifying any possible solution that is not consistent with the latest choice into onethat has at least as good value and is consistent with this choice.

Satisfiability

- A famous optimization problem is called satisfiability.
- The recursive backtracking algorithm is referred to as the Davis-Putnam algorithm.
- An example of an algorithm whose running time is exponential for worst case inputs

Satisfiability Problem

Instances:

- An instance (input) consists of a set of constraints on the assignment to the binary variables $x 1, x 2, \ldots, x n$.
- A typical constraint might be $x 1$ or $x 3$ or $x 8$, equivalently that either $x 1$ is true, $x 3$ is false, or $x 8$ is true.

Solutions:

- Each of the $2 n$ assignments is a possible solution.
- An assignment is valid for the given instance if it satisfies all of the constraints.

Measure of Success:

- An assignment is assigned the value one if it satisfies all of the constraints, and the value zero otherwise.

Goal:

- Given the constraints, the goal is to find a satisfying assignment.

Code：

algorithm DavisPutnam（c）
$\langle p r e-c o n d\rangle: c$ is a set of constraints on the assignment to \vec{x} ．
$\langle p o s t-c o n d\rangle$ ：If possible，optSol is a satisfying assignment and opt Costis also c
Otherwise opt Cost is zero．
begin
if（ c has no constraints or no variables ）then
\％c is trivially satisfiable．
return $\langle\varnothing, 1\rangle$
else if（ c has both a constraint forcing a variable x_{i} to 0 and one forcing the same variable to 1）then
\％c is trivially not satisfiable．
return $\langle\varnothing, 0\rangle$
else
for any variable forced by a constraint to some value
substitute this value into c ．
let x_{i} be the variable that appears the most often in c
\％Loop over the possible bird answers．
for $k=0$ to 1 （unless a satisfying solution has been found）
\％Get help from friend．
let c^{\prime} be the constraints c with k substituted in for x_{i}
〈optSubSol，optSubCost〉＝DavisPutnam（ c^{\prime} ）
optSol $_{k}=\left\langle\right.$ forced values，$x_{i}=k$ ，optSubSol \rangle
optCost $_{k}=$ optSubCost
end for
\％Take the best bird answer．
$k_{\max }=$ a k that maximizes opt cost_{k}
optSol $=$ optSol $k_{k_{\max }}$
optCost $=$ optCost $k_{k_{\max }}$
return＜optsol，opt Cost〉
end if
end algorithm

Running Time:

- If no pruning is done, then the running time is ($2 n$), as all $2 n$ assignments are tried.
- Considerable pruning needs to occur to make the algorithm polynomial-time.
- Certainly in the worst case, the running time is $2(n)$.

