
MEALY & MOORE MACHINE

Moore Machine

$$\lambda \rightarrow Q = \Delta$$

Mealy Machine

$$\lambda \rightarrow \mathbf{Q} * \Sigma = \Delta$$

Mealy and Moore machine consist of **SIX TUPLE**:

 $(Q, \Sigma, \delta, qo, \Delta, \lambda)$

Q= Set of State

 Σ = Set of Alphabet

 δ = Transition

q0= Initial State

 Δ = Set of Output alphabet (Output Symbol)

λ= Output Mapping Function

Conversion of Mealy Machine to Moore Machine

- 1. Find out different output generated with qí in the next state column of Mealy Machine.
- 2. Then split q'i into different states depending upon output generated with it.

For example: If output generated by qí is '1' in the first next state column & '0' in the second next state column, then split q1 into q10 & q11.

Follow the above steps for all the states.

3. Now copy all the present states & next states in Moore machine format and output of the next state are common.

REKHA KULKARNI ECE

Conversion of Mealy to Moore Machine

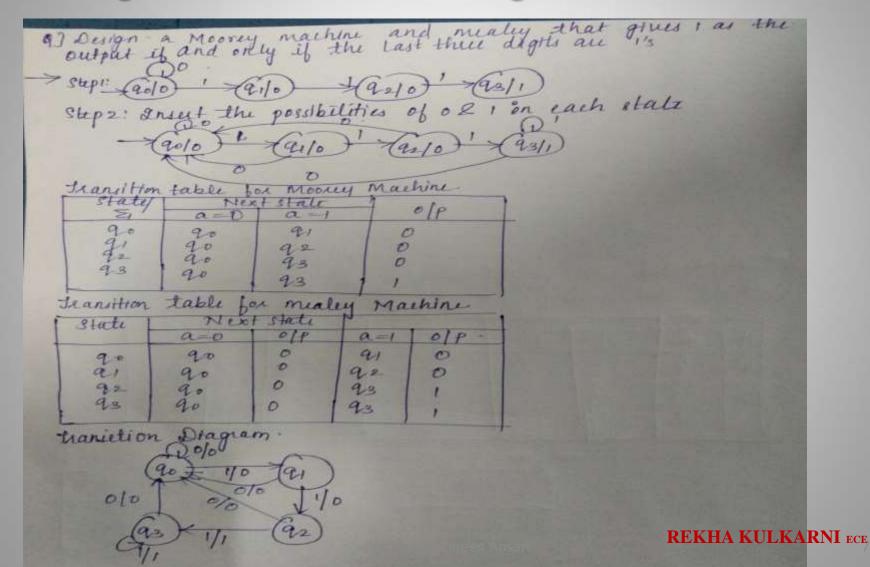
 $Q * \Sigma = \Delta$: $Q = \Delta$

			1000						e ceastein
construct -	the fe	ellowing	Melay n	nathir	re int	b iti	equiva	ELECT PLOOT	e necessare
Presentalah		0 1	a=1						
	state	10/P 3to	ete 0/P						
a:	93	200	12 0						
9.3	91	1 9	+ 0						
Step: From	94	1 9	3 10 1			4 24	ate in	to two	state
Step 1: From	the a	bove fat	ele classif	ey out	out				
		es with	dimita	is outp	ut				
State		- cle	LU 2						
913	021_	-/-	- ctass:				140	to to the	machine
eteps: for	the -	state cott	4. differ	und or	upput a	mut	iero sin	le at the	nathine
, sui	h that	one tran	nitron to	ible &	zy ado	ding n	ew sin	1 1	Ť
Step 3: 1400	states	10191		Paeser	at -	state	0)9-	3 tate \ 018	
130000	310	,0	+	grat		93	0	220 0	
1	920	19		9 11		210	100	940 0	
1000	93	00		93		221	10	940 0	1
	241	7		94		941	1:	1 23 0	
Step4: J	he equ	ivalence	more m	achi ne	e giv	ien a	s foll	O WH -	
Pres	ate		state 1 a = 1	1	OIP				
	20	23	20	20	9)			
	120	430	1 ga		0	1			
	901	910	94	200	0	1			
	2-70	241	1 23		0	1		REKHA KUL	KARNI ECE

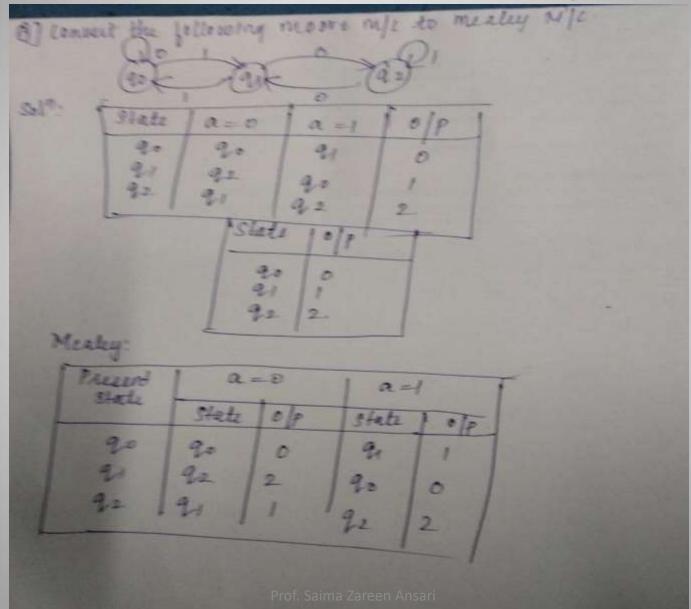
911

Conversion of Moore Machine to Mealy Machine

- 1. Draw the Mealy machine table.
- 2. Copy all the Present state & Next state column of the states into the table.
- 3. For output column of the Next state, check Present state & its output generated in the Moore Machine table.


For example: If output generated by state Qí is 'm', copy this output into the output column of Mealy machine table wherever Qí is present in the next state.

Conversion of Moore to Mealy Machine


 $\mathbf{Q} = \mathbf{\Delta}$

•

$$\mathbf{Q} * \mathbf{\Sigma} = \mathbf{\Delta}$$

Construction of Moore & Melay Machine

THANK YOU