
KUPPAM ENGINEERING COLLEGE

ONLINE COURSE : COVID-19 ZOOM VIDEO CLASSES

SUBJECT : MICROPROCESSOR & MICROCONTROLLER
BY

Dr. K. RASADURAI
Department of Electronics and Communications Engineering

KUPPAM ENGINEERING COLLEGE,
Kuppam – 517425, Chittoor Dist., Andhra Pradesh

1. I/O ports pull up/down resistors concepts

2. Interrupts and interrupt programming

3. Watchdog timer

4. System clocks

5. Low Power aspects of MSP430:

a. low power modes,

b. Active vs Standby current consumption

6. FRAM vs Flash for low power & reliability

7. Timer & Real Time Clock (RTC)

8. PWM control, timing generation and measurements

9. Analog interfacing and data acquisition:

a. ADC and Comparator in MSP430,

b. Data transfer using DMA.

5
/7

/2
0

2
0

2

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C
CONTENT

GPIO – REGISTERS OR DIGITAL I/O

5
/7

/2
0

2
0

3

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

5
/7

/2
0

2
0

4

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C
MSP 430 - GENERAL PURPOSE IO

LAUNCH PAD DEVELOPMENT BOARD

5
/7

/2
0

2
0

5

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C
1. GENERAL PURPOSE INPUT OUTPUT (GPIO)

- one of the simplest integrated peripherals of the

MSP430.

- General Purpose 8-bit Input Output (GPIO).

- The Input / Output (I/O) ports can be configured as

interruptible or non-interruptible.

- Additionally, the port pins can be individually configured

for general-purpose use, or

- as special function I/Os, such as USARTs, comparator

signals and ADCs.

5
/7

/2
0

2
0

6

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C
GENERAL PURPOSE IO

MSP430 device, there can be up to ten 8-bit digital Input/Output (I/O)

ports, named P1 to P10.

Typically, the MSP430 I/O ports P1 and P2 have interrupt capability.

Each interrupt on these I/O lines can be individually configured to

provide an interrupt on a rising edge or falling edge of an input signal.

All I/O lines with interrupt capacity use a single interrupt vector.

The available digital I/O pins are:

-eZ430-F2013 MSP430 USB Stick: 10 pins - Port P1 (8 bits) and Port P2 (2 bits)

- eZ430-RF2500 MSP430 USB Stick: 32 pins - Ports P1 to P4 (8 bits)

- MSP430FG4618/F2013 Experimenter board: 80 pins – Ports P1 to P10 (8 bits). Ports

P7/P8 and P9/P10 can be accessed as 16- bit values (words) as ports PA and PB

respectively.

5
/7

/2
0

2
0

7

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C
MSP 430 GPIO

Each of these I/O ports has the following capacity:

-Independently programmable

-Combined input, output, and interrupt conditions;

- Edge-selectable interrupt inputs for all the 8 bits of ports P1 and P2

- Read/write access to port-control registers supported by all two or

one-address instructions

- Each I/O has an individually programmable pullup / pulldown

resistor (2xx family only).

Individually configured as special functions I/O, for example:

- USART – Universal Synchronous/Asynchronous Receive/Transmit

- Comparative signals

- Analogue-to-Digital converter

- Amongst others…

5
/7

/2
0

2
0

8

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

GPIO – REGISTERS

Independent of the I/O port type

- (non-interruptible: P3 and others) or

- interruptible (P1 and P2),

1. Direction Registers (PxDIR)

2. Input Registers (PxIN)

3. Output Registers (PxOUT)

4. Pull-up/Pull-down Resistor Enable Registers (PxREN)

5. Output Drive Strength Registers (PxDS)

6. Function Select Registers: (PxSEL) and (PxSEL2)

7. Interruptible ports (P1 and P2)

a. Interrupt Edge Select Registers (PxIES)

b. Interrupt Flag Registers (PxIFG)

5
/7

/2
0

2
0

9

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C
GPIO – REGISTERS …

1. Direction Registers (PxDIR)

- Read/write 8-bit registers;

- Selects the direction of the corresponding I/O pin, regardless

of the selected function of the pin (general purpose I/O or as a special

function I/O);

- Other module functions must be set as required by the other

modules;

PxDIR configuration:

- Bit = 1: The port pin is set up as an output;

- Bit = 0: the port pin is set up as an input.

2. Input Registers (PxIN)

- Each bit of these read-only registers reflects the input signal at

the corresponding I/O pin (pin configured as general purpose I/O);

PxIN configuration:

- Bit = 1: The input is high;

- Bit = 0: The input is low;

- Tip: Avoid writing to these read-only registers because it will

result in increased current consumption.

GPIO – REGISTERS….

3. Output Registers (PxOUT)

 The output registers are read-write. Each bit of these registers

reflects the value written to the corresponding output pin.

PxOUT configuration:

 Bit = 1: The output is high

 Bit = 0: The output is low

 The 2xx family provides the additional feature that each I/O has a

pullup/pulldown resistor that can be individually programmed. If

the pin’s ullup/pulldown resistor is enabled, the corresponding bit

in the PxOUT register selects the pull-up or pull-down:

Bit = 1: The pin is pulled up

Bit = 0: The pin is pulled down

5
/7

/2
0

2
0

10

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

5
/7

/2
0

2
0

11

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C
GPIO – REGISTERS….

4. Pull-up/Pull-down Resistor Enable Registers (PxREN)

- Applies to the 2xx family only.

- Each bit of this register enables or disables the pullup / pulldown

resistor of the corresponding I/O pin.

- PxREN configuration:

Bit = 1: Pullup/pulldown resistor enabled

Bit = 0: Pullup/pulldown resistor disabled

5. Output Drive Strength Registers (PxDS)

- Each bit in each PxDS register selects either full drive or

reduced drive strength. Default is reduced drive strength.

PxDS configuration:

• Bit = 0: Reduced drive strength

• Bit = 1: Full drive strength

5
/7

/2
0

2
0

12

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C
GPIO – REGISTERS….

6. Function Select Registers: (PxSEL) and (PxSEL2)

- Some port pins are multiplexed with other peripheral module Functions.

- The bits: (PxSEL) and (PxSEL2 – 2xx family and some devices of the 47x(x) family), are used to

select the pin function: I/O general-purpose port or peripheral module function.

PxSEL configuration:

Bit = 0: I/O function is selected for the pin;

Bit = 1: Peripheral module function is selected for the pin.

Function Select Registers: (PxSEL) and (PxSEL2)…………..

The 2xx family devices provide the PxSEL2 bit to configure additional features of the device. The PxSEL

and PxSEL2 combination provides the following configuration of the 2xx devices:

Bit = 0: I/O function is selected for the pin;

Bit = 1: Peripheral module function is selected for the pin.

PxSE
L

PxSEL
2

Pin Function

0 0 Selects general-purpose I/O function

0 1 Selects the primary peripheral module function

1 0 Reserved (See device-specific data sheet)

1 1 Selects the secondary peripheral module function

5
/7

/2
0

2
0

13

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C
GPIO – REGISTERS….

7. Interruptible ports (P1 and P2)

Each pin of ports P1 and P2 is able to generate an interrupt request (pin is

interruptible) and is configured using the PxIFG, PxIE, and PxIES registers. The port

makes use of all the same configuration registers as non-interruptible ports (as

described above), but with three additional registers:

Interrupt Enable (PxIE)

Read-write register to enable interrupts on individual pins;

PxIE configuration:

Bit = 1: The interrupt is enabled;

Bit = 0: The interrupt is disabled.

Each PxIE bit enables the interrupt request associated with the

corresponding PxIFG interrupt flag;

Writing to PxOUT and/or PxDIR can result in setting PxIFG.

5
/7

/2
0

2
0

14

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C
GPIO – REGISTERS….

7. Interruptible ports (P1 and P2)

a. Interrupt Edge Select Registers (PxIES)

 This read-write register selects the transition on which

an interrupt occurs for the corresponding I/O pin

PxIES configuration:

* Bit = 1: Interrupt flag is set on a high-to-low transition

* Bit = 0: Interrupt flag is set on a low-to-high transition

b. Interrupt Flag Registers (PxIFG)

 The bit of this read-write register is set automatically

when the programmed signal transition (edge) occurs on the

corresponding I/O pin, provided that the corresponding PxIE bit

and the GIE bit are set

 Each PxIFG flag can be set by software, enabling an

interrupt generated by software

Each PxIFG flag must be reset with software

PxIFG configuration:

* Bit = 0: No interrupt is pending

* Bit = 1: An interrupt is pending

PROBLEM WITH INPUT USING A BUTTON

5
/7

/2
0

2
0

15

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

TYPICAL WAY OF CONNECTING A BUTTON

5
/7

/2
0

2
0

16

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

TYPICAL WAY OF CONNECTING A BUTTON
5

/7
/2

0
2
0

17

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

SAMPLE CODE FOR INPUT (MSP430G2553)
5

/7
/2

0
2
0

18

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

5
/7

/2
0

2
0

19

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

RECALL: SAMPLE CODE FOR OUTPUT

5
/7

/2
0

2
0

20

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C
GENERAL PURPOSE IO

RECALL: MEMORY-MAPPED I/O

5
/7

/2
0

2
0

21

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

GENERAL PURPOSE IO

CONFIGURING THE I/O PORTS

5
/7

/2
0

2
0

22

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

MSP430 GPIO

5
/7

/2
0

2
0

23

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

PXDIR (PIN DIRECTION): INPUT OR OUTPUT

5
/7

/2
0

2
0

24

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

MSP 430 GPIO - OUTPUT

5
/7

/2
0

2
0

25

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

GPIO - SAMPLE CODE FOR INPUT

5
/7

/2
0

2
0

26

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

5
/7

/2
0

2
0

27

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

Interrupts vector Register P1IV

P1 IV Register Description

5
/7

/2
0

2
0

28

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

Interrupts vector Register P2IV

P2 IV Register Description

5
/7

/2
0

2
0

29

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

P1 IES Register

P1 IE Register

P1 IFG Register

INTERRUPTS

5
/7

/2
0

2
0

30

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

INTERRUPTS ARE COMMONLY USED FOR A RANGE OF APPLICATIONS:

 Urgent tasks that must be executed promptly at higher priority than

the main code.

 However, it is even faster to execute a task directly by hardware if this

is possible.

 Infrequent tasks, such as handling slow input from humans. This saves

the overhead of regular polling.

 Waking the CPU from sleep. (a low-power mode and can be awakened

only by an interrupt).

 Calls to an operating system. A substitute is for software to set an

unused interrupt flag for one of the peripherals, such as port P1 or P2.

5
/7

/2
0

2
0

31

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

INTERRUPTS - HANDLED

 The code that was interrupted can be resumed without error.

(the values in the CPU registers must be restored).

 The hardware can take two extreme approaches to this:

 Copies of all the registers are saved on the stack

automatically as part of the process for entering an

interrupt.

 The opposite approach is for the hardware to save only

the absolute minimum, which is the return address in the

PC as in a subroutine.

 This is much faster but it is up to the user to save and

restore values of the critical registers, notably the status

register.

5
/7

/2
0

2
0

32

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

WHAT HAPPENS WHEN AN INTERRUPT IS REQUESTED?

Hardware then performs the following steps to launch the ISR:

1. Any currently executing instruction is completed if the CPU was active when the

interrupt was requested. MCLK is started if the CPU was off.

2. The PC, which points to the next instruction, is pushed onto the stack.

3. The SR is pushed onto the stack.

4. The interrupt with the highest priority is selected if multiple interrupts are waiting for

service.

5. The interrupt request flag is cleared automatically for vectors that have a single

source. Flags remain set for servicing by software if the vector has multiple sources,

which applies to the example of TAIFG.

6. The SR is cleared, which has two effects. First, further maskable interrupts are

disabled because the GIE bit is cleared; nonmaskable interrupts remain active.

Second, it terminates any low-power mode

7. The interrupt vector is loaded into the PC and the CPU starts to execute the interrupt

service routine at that address.

This sequence takes six clock cycles in the MSP430 before the ISR

commences. The stack at this point is shown in Figure 6.5. The

position of SR on the stack is important if the low-power mode of

operation needs to be changed.

5
/7

/2
0

2
0

33

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

5
/7

/2
0

2
0

34

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C
MSP430 - INTERRUPTS

5
/7

/2
0

2
0

35

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C
MSP430 - INTERRUPTS

5
/7

/2
0

2
0

36

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C
MSP430 - INTERRUPTS

5
/7

/2
0

2
0

37

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

INTERRUPT FLAGS

5
/7

/2
0

2
0

38

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C
INTERRUPT VECTORS

5
/7

/2
0

2
0

39

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C
INTERRUPT MEMORY

5
/7

/2
0

2
0

40

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C
SERVING INTERRUPT REQUEST

5
/7

/2
0

2
0

41

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C
MSP430X2XX INTERRUPT VECTORS

Higher address -> higher priority

5
/7

/2
0

2
0

42

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C
MSP430F2274 Address Space

5
/7

/2
0

2
0

43

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C
PROCESSING AN INTERRUPT………

INTERRUPT STACK
5

/7
/2

0
2
0

44

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

INTERRUPT SERVICE ROUTINES
5

/7
/2

0
2
0

45

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

INTERRUPT SERVICE ROUTINES
5

/7
/2

0
2
0

46

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

5
/7

/2
0

2
0

47

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C
INTERRUPT SERVICE ROUTINES

RETURNING FROM ISR
5

/7
/2

0
2
0

48

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

RETURN FROM INTERRUPT
5

/7
/2

0
2
0

49

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

SUMMARY
5

/7
/2

0
2
0

50

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

P1 AND P2 INTERRUPTS
5

/7
/2

0
2
0

51

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

5
/7

/2
0

2
0

52

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

5
/7

/2
0

2
0

53

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

5
/7

/2
0

2
0

54

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

5
/7

/2
0

2
0

55

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

LOW POWER MODES :
5

/7
/2

0
2
0

56

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

5
/7

/2
0

2
0

57

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

5
/7

/2
0

2
0

58

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C
Low-Power Optimization

5
/7

/2
0

2
0

59

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

5
/7

/2
0

2
0

60

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

5
/7

/2
0

2
0

61

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

5
/7

/2
0

2
0

62

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

Time

5
/7

/2
0

2
0

63

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

5
/7

/2
0

2
0

64

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

5
/7

/2
0

2
0

65

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C
Lower Power Saving in MSP430

The most important factor for reducing power

consumption is using the MSP430 clock system to maximize

the time in LPM3

Finally, powering your system with lower voltages

means lower power consumption as well.

LOW POWER MODES

LPM0

fast clock from
SMCLK and

DCO

LPM3

must maintain
a real-time

clock

LPM4

- wakened only
by an external

signal,
(RST/NMI)

Active Mode

An interrupt
automatically

switches
MSP430 …

5
/7

/2
0

2
0

66

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

5
/7

/2
0

2
0

67

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

• Active mode:

MSP430 starts up in this mode, which must be used when the CPU is

required, i.e., to run code

An interrupt automatically switches MSP430 to active

Current can be reduced by running at lowest supply voltage consistent with

the frequency of MCLK, e.g. VCC to 1.8V for fDCO = 1MHz

• LPM0:

CPU and MCLK are disabled

 Used when CPU is not required but some modules require a fast clock from

SMCLK and DCO

• LPM3:

Only ACLK remains active

Standard low-power mode when MSP430 must wake itself at regular

intervals and needs a (slow) clock

Also required if MSP430 must maintain a real-time clock

• LPM4:

CPU and all clocks are disabled

MSP430 can be wakened only by an external signal, e.g., RST/NMI, also

called RAM retention mode

LOW POWER MODES OF MSP430

5
/7

/2
0

2
0

68

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C
Principles of Low-Power Apps

Maximize the time in LPM3 mode

Use interrupts to wake the processor

Switch on peripherals only when needed

Use low-power integrated peripherals

Timer_A and Timer_B for PWM

Calculated branches instead of flag polling

Fast table look-ups instead of calculations

Avoid frequent subroutine and function calls

Longer software routines should use single-cycle

CPU registers

5
/7

/2
0

2
0

69

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C
Controlling Low Power Modes

Through four bits in Status Register (SR) in CPU

- SCG0 (System clock generator 0) : when set, turns off DCO, If

DCOCLK is not used for MCLK or SMCLK

- SCG1 (System clock generator 1) : when set, turns off the SMCLK

- OSCOFF(Oscillator off): when set, turns off LFXT1 crystal oscillator,

when LFXT1CLK is not use for MCLK or SMCLK

- CPUOFF (CPU off): when set, turns off the CPU

- All are clear in active mode

5
/7

/2
0

2
0

70

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

5
/7

/2
0

2
0

71

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C
Controlling Low Power Modes

Status bits and low-power modes

MSP 430 CLOCK MODES

STATUS BITS AND LOW-POWER MODES

SCG1 SCG0 OSC

OFF

CPU

OFF

MODE CPU & Clocks Status

0 0 0 0 ACTIVE CPU is active, all enabled clocks are active

0 0 0 1 LPM0 CPU, MCLK are disabled, SMCLK, ACLK are

active

0 1 0 1 LPM1 CPU, MCLK are disabled, DCO and DC

generator are disabled if the DCO is not used

for SMCLK, ACLK are active

1 0 0 1 LPM2 CPU, MCLK, SMCLK, DCO are disabled, DC

generator remains enabled, ACLK is active

1 1 0 1 LPM3 CPU, MCLK, SMCLK, DCO are disabled, DC

generator remains disabled, ACLK is active

1 1 1 1 LPM4 CPU and all clocks disabled

5
/7

/2
0

2
0

73

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

ENTERING/EXITING LOW-POWER MODES

Interrupt wakes MSP430 from low-power modes:

• Enter ISR:

 PC and SR are stored on the stack

 CPUOFF, SCG1, OSCOFF bits are automatically

reset - entering active mode

 MCLK must be started so CPU can handle interrupt

• Options for returning from ISR:

 Original SR is popped from the stack, restoring the

previous operating mode

 SR bits stored on stack can be modified within ISR to

return to a different mode when RETI is executed

5
/7

/2
0

2
0

74

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

5
/7

/2
0

2
0

75

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

SAMPLE CODE (MSP430G2XX1 _TA_01)
5

/7
/2

0
2
0

76

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

5
/7

/2
0

2
0

77

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C
Flash green LED at 0.5 Hz using interrupt from Timer_A, driven by ACLK sourced by

VLO in LPM3.

•While pushing the button:

- Change from LPM3 to LPM0

- Wake up every 1 sec using interrupt from Timer_A driven by SMCLK sourced by

VLO.

- On wake up, measure the temperature. If the temperature is higher than 737, flash

the red LED at 5 Hz; otherwise flash the green LED at 1 Hz.

• When the button

is released,

returns the

system to LPM3

and flash green

LED at 0.5 Hz

again.

TIMERS

1. Watchdog timer:

Its main function is to protect the system against malfunctions

but it can instead be used as an interval timer if this protection is not

needed. (petting, feeding, or kicking the dog)

2. Timer_A: It typically has three channels and is much more

versatile than the simpler timers. Timer_A can handle external inputs and

outputs directly to measure frequency, time-stamp inputs, and drive

outputs at precisely specified times, either once or periodically.

There are internal connections to other modules so that it can

measure the duration of a signal from the comparator, for instance. It can

also generate interrupts.

3. Timer_B: Included in larger devices of all families. It is similar to

Timer_A with some extensions that make it more suitable for driving

outputs such as pulse-width modulation. Against this, it lacks a

feature of sampling inputs in Timer_A that is useful in

communication.

5
/7

/2
0

2
0

78

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

5
/7

/2
0

2
0

79

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C
TIMERS

4. Basic timer1: Present in the MSP430x4xx family only.

It provides the clock for the LCD and acts as an interval timer.

Newer devices have the LCD_A controller, which contains its own clock generator

and frees the basic timer from this task.

5. Real-time clock: In which the basic timer has been extended to provide a real-
time clock in the most recent MSP430x4xx devices.

WATCHDOG TIMER

 - To protect the system against failure of the software, such as the program

becoming trapped in an unintended, infinite loop. Left to itself,

 The watchdog counts up and resets the MSP430 when it reaches its limit.

 Keep clearing the counter before the limit is reached to prevent a reset.

 Operation of WDT is controlled by the 16-bit register WDTCTL.

 Password WDTPW = 0x5A in the upper byte.

 A reset will occur if a value with an incorrect password is written to

WDTCTL.

 This can be done deliberately if you need to reset the chip from software.

 Reading WDTCTL returns 0x69 in the upper byte, so reading WDTCTL &

writing the value back violates the password and causes a reset.

5
/7

/2
0

2
0

80

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

THE LOWER BYTE OF THE WATCHDOG TIMER CONTROL REGISTER WDTCTL

 The lower byte of WDTCTL contains the bits that control the
operation of the watchdog timer.

 The RST/NMI pin is also configured using this register (which not
forget when servicing the watchdog)

 Most bits are reset to 0 after a power-on reset (POR) but are
unaffected by a power-up clear (PUC).

 This distinction is important in handling resets caused by the
watchdog.

 The exception is the WDTCNTCL bit, labeled r0(w). This means that
the bit always reads as 0 but a 1 can be written to stimulate some
action, clearing the counter in this case.

5
/7

/2
0

2
0

81

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

 The watchdog counter is a 16-bit register WDTCNT, which is not visible to the

user.

 It is clocked from either SMCLK or ACLK, according to the WDTSSEL bit.

 The reset output can be selected from bits 6, 9, 13, or 15 of the counter. Thus the

period is 26 = 64, 512, 8192, or 32,768 times the period of the clock.

 This is controlled by the WDTISx bits in WDTCTL. The intervals are roughly 2,

16, 250, and 1000 ms if the watchdog runs from ACLK at 32 KHz.

 The watchdog is always active after the MSP430 has been reset. By default the

clock is SMCLK, which is in turn derived from the DCO at about 1 MHz.

 The default period of the watchdog is the maximum value of 32,768 counts,

which is therefore around 32 ms.

 You must clear, stop, or reconfigure the watchdog before this time has elapsed.

5
/7

/2
0

2
0

82

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C
WATCHDOG COUNTER

5
/7

/2
0

2
0

83

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C
Program wdtest1.c to demonstrate the watchdog timer.

- selected the clock from ACLK (WDTSSEL = 1) and the longest period (WDTISx = 00), which

gives 1s with a 32 KHz crystal for ACLK. (restart)

- LED1 shows the state of button B1 and LED2 shows WDTIFG.

- The watchdog is serviced by rewriting the configuration value in a loop while button B1 is held

down.

-If the button is left up for more than 1s the watchdog times out, raises the flag WDTIFG, and

resets the device with a PUC. This is shown by LED2 lighting.

a. Fail - safe Clock Source for Watchdog Timer+

 This includes fail-safe logic to preserve the watchdog’s clock.

 Suppose that the watchdog is configured to use ACLK and the program

enters low-power mode 4 to wait for an external interrupt,

 i. The old watchdog (WDT) stops during LPM4 and resumes counting when

the device is awakened.

 ii. WDT+ does not let the device enter LPM4 because that would disable its

clock. Therefore it is not possible to use LPM4 with WDT+ active; the

watchdog must first be stopped by setting WDTHOLD.

 iii. Similarly, it is not possible to use LPM3 if WDT+ is active and gets

its clock from SMCLK.

 iv. If its clock fails, WDT+ switches from ACLK or SMCLK to

MCLK and takes this from the DCO if an external crystal fails.

 The watchdog interval may change dramatically but there must be

serious problems elsewhere if this happens.

 Newer devices, including the MSP430F2xx family and recent members

of the MSP430x4xx, have the enhanced watchdog timer+ (WDT+).

5
/7

/2
0

2
0

84

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C
WATCHDOG TIMER…

2. Watchdog as an Interval Timer

 The watchdog can be used as an interval timer if its protective function

is not desired.

 Set the WDTTMSEL bit in WDTCTL for interval timer mode.

 The periods are the same as before and again WDTIFG is set when

the timer reaches its limit, but no reset occurs.

 The counter rolls over and restarts from 0.

 An interrupt is requested if the WDTIE bit in the special function

register IE1 is set.

 This interrupt is maskable and as usual takes effect only if GIE is also

set.

 The watchdog timer has its own interrupt vector, which is fairly high

in priority but not at the top.

 It is not the same as the reset vector, which is taken if the counter

times out in watchdog mode.

 The WDTIFG flag is automatically cleared when the interrupt is

serviced. It can be polled if interrupts are not used.

5
/7

/2
0

2
0

85

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C
WATCHDOG TIMER…

BASIC TIMER1
5

/7
/2

0
2
0

86

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

Basic Timer1 control register BTCTL

Block diagram of Basic Timer1

It provides the clock for the LCD module and generates periodic interrupts.

(a real-time clock driven by a signal at 1Hz)

REAL-TIME CLOCK

 It counts seconds, minutes, hours, days, months, and years.

 Alternatively it can be used as a straight forward

 It is configured in calendar mode by setting RTCMODEx=11 in the control register

RTCCTL.

5
/7

/2
0

2
0

87

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

TIMER_A

 Two main parts to the hardware:

 a. Timer block: The core, based on the 16-bit

register TAR. There is a choice of sources for the

clock, whose frequency can be divided down (prescaled).

The timer block has no output but a flag TAIFG is

raised when the counter returns to 0.

 b. Capture/compare channels: In which most

events occur, each of which is based on a register

TACCRn. They all work in the same way with the

important exception of TACCR0. Each channel can

 Capture

 Compare

 Request an interrupt

 Sample

5
/7

/2
0

2
0

88

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

BLOCK DIAGRAM OF TIMER_A :

THE TIMER BLOCK AND CAPTURE / COMPARE CHANNEL 1
5

/7
/2

0
2
0

89

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

The circles show external signals that may be brought out to pins

of the device.

TIMER BLOCK
5

/7
/2

0
2
0

90

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

a 16-bit timer register

TAR, which is central to the

operation of the timer.

It can be chosen from

four sources by using the TASSELx

bits:

• SMCLK

•ACLK

•TACLK

• INCLK.

5
/7

/2
0

2
0

91

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

5
/7

/2
0

2
0

92

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

5
/7

/2
0

2
0

93

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

5
/7

/2
0

2
0

94

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

5
/7

/2
0

2
0

95

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

5
/7

/2
0

2
0

96

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

MEASUREMENT IN THE CAPTURE MODE

 The Capture mode is used to take a time stamp of an event:

 to note the time at which it occurred.

 A measurement typically requires two or more captures,

 The timer can be used in two opposite ways illustrated in Figure:

 Two ways in which the Capture mode is used to time a signal.

5
/7

/2
0

2
0

97

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

MEASUREMENT OF TIME: PRESS AND RELEASE OF A BUTTON

MEASUREMENT OF TIME: REACTION TIMER

MEASUREMENT OF FREQUENCY: COMPARISON OF SMCLK AND ACLK 5
/7

/2
0

2
0

98

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

OUTPUT IN THE CONTINUOUS MODE

The Continuous mode is typically used in the following

circumstances:
 All channels are needed for output, including channel 0.

 Outputs must be driven at different, unrelated frequencies.

 Single delays are required rather than periodic signals.

 Some channels are used for capture and some for compare events.

 Generation of Independent, Periodic Signals

 A Single Pulse or Delay with a Precise Duration

 Generation of a Precise Frequency

5
/7

/2
0

2
0

99

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

PWM

 Output in the Up Mode: Edge-Aligned Pulse-

Width Modulation

 Uses of Channel 0 in the Up Mode

 Edge-Aligned PWM

 Simple PWM

 Design of PWM

 Software-Assisted PWM

 Output in the Up/Down Mode: Centered

Pulse-Width Modulation

5
/7

/2
0

2
0

100

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

WHAT TIMER WHERE?
 Five types of timer in the MSP430

 Pulse-width modulation: Use Timer_B if available on your device,

otherwise Timer_A. Connect the load directly to an output of the timer so

that it can be driven directly by hardware.

 Less regular outputs: Connect directly to an output of Timer_A or B. Use

the Up mode if the intervals between changes are always the same, as in

many forms of communication. The Continuous mode is easier if the

intervals vary.

 Inputs to be sampled at regular intervals: Connect directly to an input of

Timer_A and use the Sampling mode (the Compare mode with the SCCI

bit). This applies mainly to communications.

 Inputs to be timed: Connect slow inputs directly to a Capture input of

Timer_A or B. Fast signals should be connected to one of the timer clock

inputs, such as TACLK or INCLK.

 Interaction with other peripherals: Use the internal connections to other

peripherals wherever possible, both for capture and compare events. This

gives precise timing and saves power if the CPU need not be restarted.

5
/7

/2
0

2
0

101

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

 Periodic software interrupts: A wide range of options are available and

the selection is less clear:

• Try the watchdog timer if it is not needed as a watchdog and if the

interval is appropriate; there is a choice of only four intervals for a

given clock frequency.These are roughly 2, 16, 250, and 1000 ms

from ACLK at 32 KHz, slower if VLO is used instead. Shorter

intervals can be obtained by using SMCLK instead of ACLK.

• The obvious choice in a MSP430x4xx device is Basic Timer1,

again provided that the interval is convenient. The typical range is

from about 16 ms to 2s. The real-time clock gives further options if

available.

• If neither of these is suitable you use Timer_A or B, which can

produce almost any interval esired. The snag is that this may

interfere with the use of their more advanced features.

 Less regular software interrupts: Use Timer_A or B, preferably in the

Continuous mode.

 The last resort: Use software loops. Avoid these whenever possible

except for trivial cases, such as delays while a clock stabilizes.

5
/7

/2
0

2
0

102

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C
WHAT TIMER WHERE?

MIXED-SIGNAL SYSTEMS: ANALOG INPUT AND OUTPUT

 Comparator: Simple and cheap module that cannot perform a conversion

by itself but is usually used with Timer_A to measure the time-constant of

an external RC circuit. There are two versions, Comparator_A and

Comparator_A+.

 Successive - approximation ADC: The general-purpose type of ADC for

many years. It is fast and relatively straightforward to understand. There

are two versions, ADC10 and ADC12, which give 10 and 12 bits of

output.

 Sigma–delta ADC: A more complicated ADC that works in a quite

different way to give higher resolution (more bits) but at a slower speed.

There are two versions, SD16 and SD16_A, both of which give a 16-bit

output.

5
/7

/2
0

2
0

103

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

COMPARATOR_A

 Architecture of Comparator_A+

5
/7

/2
0

2
0

104

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

Simplified block diagram of Comparator_A+

COMPARATOR_A
 Operation of Comparator_A+

5
/7

/2
0

2
0

105

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

(a) Thermistor connected in a potential divider with the internal

reference 0.5VCC.

(b) Wheatstone bridge with two resistors R to represent the internal

reference.

(c) Battery voltage monitor against the fixed internal reference voltage

Vdiode.

Slope Conversion of a Resistance

 Connection of a resistor and capacitor to the comparator to form a slope

ADC.

(a) Single resistor and

(b) reference resistor for comparison with the unknown resistor.

5
/7

/2
0

2
0

106

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C
COMPARATOR_A

 Relaxation Oscillator with Comparator_A
5

/7
/2

0
2
0

107

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C
COMPARATOR_A

(a) Circuit with the capacitor connected to the inverting input of the

comparator so that CAOUT provides the correct drive for the resistor. The

circuit for the threshold voltage has three equal resistors so that its output

voltage is (b) 1/3 VCC when CAOUT = 1 and (c) 2/3 VCC when CAOUT = 0.

 Capacitative Touch Sensing with Comparator_A

5
/7

/2
0

2
0

108

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C
COMPARATOR_A

Operation of a simple capacitative touch sensor.

(a) Two conducting pads on the bottom of an insulating sheet

form a capacitor, whose electric field extends outside the top of the sheet.

(b) A finger on top of the insulator distorts the electric field and

increases the capacitance between the pads.

1. Resolution, Precision, and Accuracy

2. Signal-to-Noise Ratios

3. Jitter in Timing

4. Sampling in Time and Aliasing

5. Practical Issues with ADCs

 Input range

 Voltage reference

 Noise and filtering

 Decoupling and layout

5
/7

/2
0

2
0

109

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C
ANALOG-TO-DIGITAL CONVERSION

ANALOG-TO-DIGITAL CONVERSION

 General Issues

 1. Resolution, Precision, and Accuracy

 Accuracy: How close a measurement is to its “true” value, which

would be produced by an ideal system. This is easy to define but ha rd

to measure.

 Resolution or precision: The number of distinct output values that a

measurement can provide. Alternatively, it can be specified as the

change in input that corresponds to the minimum change in output, 1

bit.

5
/7

/2
0

2
0

110

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

ADC SIGNAL-TO-NOISE RATIOS
5

/7
/2

0
2
0

111

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

 The total unadjusted error is called a static parameter because in

principle it is measured by sweeping the input slowly through its range.

The other type of parameter is dynamic, where we look at the

performance as a function of time.

 The quantization of the input is a type of error.

 by plotting the continuous signal, its quantized version, and the

difference, called the quantization error

SIGNAL-TO-NOISE RATIOS…

 Typically the quantization noise is equally likely to take any value

between ±½ LSB, in which case its rms value can be shown to be

LSB/ √12. The sine wave has a peak amplitude of 4LSB so its rms

value is 4LSB/√2. The ratio of these two is called the signal-to-noise

ratio, or SNR. It is always quoted in decibels (dB) and is defined by

5
/7

/2
0

2
0

112

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

JITTER IN TIMING

 Accurate samples depend on accurate timing as well as the transfer

characteristic. Ideally the input V(t) is sampled at time tn when the

voltage is Vn. However, errors in the timing with a spread of (del)t

lead to errors in the voltage of V. They are related by

 Clearly this is more important for rapidly varying signals. Accurate

timing requires samples to be triggered by a timer through hardware

rather than by software. The successive-approximation ADC10 and

ADC12 modules in the MSP430 therefore have internal connections

to Timer_A and Timer_B. This is not necessary for the sigma–delta

ADCs because they are much slower.

5
/7

/2
0

2
0

113

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

JITTER IN TIMING

5
/7

/2
0

2
0

114

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

Effect of jitter in timing of sample on voltage recorded.

SAMPLING IN TIME AND ALIASING

 We saw how finite resolution in voltage—quantization—affects the signal. Now we

look at the equivalent problem in time. Let

• f be the frequency of the signal, assumed to be a simple sine wave.

• fs be the rate at which it is sampled, with Ts = 1/fs the interval between samples.

 The sampling frequency fs is often quoted with units of “samples per second” (sps)

rather than hertz (Hz) but the meaning is the same. Suppose that fs = 1ksps to keep the

numbers simple and consider a signal with frequency f = 310Hz.

 a plot of the continuous signal and the discrete samples every 1ms. There are no

obvious problems.

5
/7

/2
0

2
0

115

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

ANALOG-TO-DIGITAL CONVERSION:

SUCCESSIVE APPROXIMATION

5
/7

/2
0

2
0

116

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

Operation of a 4-bit successive-operation ADC with an input of

Vin = 0.4 VFS.

OPERATION OF A SWITCHED-CAPACITOR

SAR ADC

5
/7

/2
0

2
0

117

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

Circuit of a 4-bit, charge-redistribution SAR ADC. The switches are

in the positions to sample the input.

THE ADC10 SUCCESSIVE-APPROXIMATION ADC
5

/7
/2

0
2
0

118

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

Simplified block diagram of the ADC10. The connections for external

references, automatic sequences of conversions, and the data transfer

controller are omitted for clarity.

5
/7

/2
0

2
0

119

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

ANALOG-TO-DIGITAL CONVERSION: SIGMA–DELTA

ARCHITECTURE OF A SIGMA–DELTA ADC

DIGITAL FILTERS IN SIGMA–DELTA ADCS

THE FINAL RESULT FROM A SIGMA–DELTA ADC

Block diagram of a sigma–delta ADC. The loop forms the

sigma–delta

modulator, which is followed by a digital filter.

THE SD16_A SIGMA–DELTA ADC
5

/7
/2

0
2
0

120

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

Block diagram of the SD16_A sigma–delta ADC. The external

connections for the reference voltage and some aspects of the

interrupts are omitted for clarity.

RANGE OF INPUTS TO THE SD16 USING ITS INTERNAL 1.2V REFERENCE. THE

PROGRAMMABLE GAIN AMPLIFIER IS SET TO GPGA = 1 AND 2.

5
/7

/2
0

2
0

121

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

Output formats from the SD16: (a) bipolar twos complement,

(b) bipolar offset binary, and (c) unipolar.

THANK YOU

5
/7

/2
0

2
0

122

D
r. K

. R
a
sa

d
u

ra
i, E

C
E

, K
E

C

KUPPAM ENGINEERING COLLEGE

ONLINE COURSE : COVID-19 ZOOM VIDEO CLASSES

SUBJECT : MICROPROCESSOR & MICROCONTROLLER
BY

Dr. K. RASADURAI
Department of Electronics and Communications Engineering

KUPPAM ENGINEERING COLLEGE,
Kuppam – 517425, Chittoor Dist., Andhra Pradesh

Content

1. Serial communication basics

2. Synchronous/Asynchronous interfaces (like UART,
USB, SPI, and I2C).

3. UART protocol, I2C protocol, SPI protocol.

4. Implementing and programming UART, I2C, SPI
interface using MSP430, Interfacing external
devices.

5. Implementing Embedded Wi-Fi using CC3100

SERIAL COMUNICATION INTERFACE

Interfacing for Data Communication between Processors & Digital
Peripherals:

 Communication Port

 Collection of signal wires: data, handshake/control/status, clock

 Data Communication Modes

 Parallel: Several data bits at a time

 Serial: Single data bit at a time

 Serial Communication Modes

 Asynchronous communication (UART, ACIA, SCI, etc.): Clock
generated at Tx and Rx with the same nominal value. Clock not
transmitted.

 Synchronous serial communication (SRT, SPI, I2C, etc.): Clock
generated by the master; used by Tx & Rx; transmitted using a
separate line or by combining it with data (Manchester coding).

SERIAL COMUNICATION INTERFACE..
 Serial Communication Standards

 Interface Logic Levels

 Physical Link (cables & connectors)

 Data Transfer Protocol

 Bandwidth, Noise, Range

 Communication Devices

 Data terminal equipment (DTE): computer, terminal, etc.

 Data communication equipment (DCE): modem, printer, etc.

 Data Frame

 Non-divisible packet of bits

 Bit Time: basic time interval, Bit Rate: no. of bits / s

 Baud Rate: no.of pulses / s

 Data: information data bits

 Overhead: start / stop / parity, synchronization messages, etc.

 Data Bandwidth / Throughput: no. of information bits
(excluding overhead) / s

Simplex/Duplex Communication

 Simplex: Information transfer in one direction only (excluding status /
handshakes, etc.).

 Half-duplex: Information transfer in one direction at a time.

 Full-duplex: Simultaneous bi-directional information transfer.

Communication Logic Levels

 CMOS (processor port pins): true/mark: ≈ 5V, false/space: <0.1 V.

 RS 232 (drivers): Negative logic, Non-return-to-zero (NRZ), true/mark: −12 V,
false/space: +12 V, idle state: true (−12 V).

 Differential voltage (drivers): To reduce the effect of electrostatic interference
and ground noise. RS 485: true/mark: −3 V, false/space: +3 V.

 Open collector (processor port pins / drivers): Low & high Z, with passive pull-
up.

 Tri-stated (processor port pins / drivers): Low, high, & high Z (idle).

 Current loop (drivers, 4/20 mA): To reduce the effect of inductive interference.

 Opto-coupler: For electrical isolation.

SERIAL COMUNICATION INTERFACE…

 Serial Bus with Multi-drop Network

 Tri-state logic: Disable the driver after transmission. RTS
= 0 for transmission, RTS = 1 after completion. Data: 0-
127, Address: 128-255.

 Collision detection & avoidance: Transmit a frame.
Receive it & check for integrity. If collision is detected,
wait for a random delay & retransmit.

 Data Transfer Protocols

 Fixed length messages

 Message length after the address

 Special character as terminator

 Interconnection Topology
 Point to Point , Star, Bus, Ring

SERIAL COMUNICATION INTERFACE….

SERIAL COMUNICATION INTERFACE…..

 Asynchronous Communication

 No clock transmission. Only data & handshake lines. Tx & Rx use local
clocks with same nominal value, not synchronized.

 Transmission: Idle state, start bit, data bits, (parity, error correction
bits), stop bit(s) / idle state. Reception: Detect start (1 → 0)
transition,wait 1/2 bit time, sample the input at bit time intervals.

• Clock tolerance
Tx bit time = Tb
Rx bit time = Tb+Δ
Cumulative error = NΔ < 0.5Tb

(N = No. of bits (including start, excluding stop/idle)
⇒ For N=10, Δ ⁄ Tb < 5%.

• Baud rate:
Limited by clock tolerance.

• Throughput (data bandwidth) for a
given baud rate:

Low due to overheads per frame
and small frame size.

 Synchronous Communication

 Tx & Rx use clock generated by the master.
 Output at one clock edge (falling) & input at the other edge (rising).

 Signal lines: Data, Clock, [Select] (Clock & data may be combined)

 Clock [& select] generated by the master

 Drivers may be needed

 No basic restriction on frame length

SERIAL COMUNICATION INTERFACE……

 Interface Cables & Connectors

 Cables

 Parallel wires

 Higher possibility of interference between lines carrying signal in
opposite directions. Ground between critical lines.

 Suited for short distance, high throughput.

 Shielded cable

 Shield connected to frame ground at one end (signal ground →
power supply ground)

 Reduced RF & electrostatic interference

 Twisted pair

 Reduced inductive pick-up

 Baud rate limited due to increased capacitive loading

 Connectors

 DB25 / RS232: 1-13,14-25; DB9 / E1A-574: 1-5, 6-9; RJ45: 1-8.

SERIAL COMUNICATION INTERFACE…….

 Serial Interface Standards
 Problem to be tackled

 Signal attenuation
 Pulse transition delay / double pulsing due to reflection
 Interference between signal lines
 External pick up Difference in ground potential
 Over voltage & Over current

SERIAL COMUNICATION INTERFACE…….

• Some solutions
• Large voltage or current levels
• Trapezoidal pulses
• Matched termination
• Use of current loop
• Differential voltage transmission
• Special cables: Shielded, Grounded
shielded, Twisted pair

 RS 232 Serial Link

 Negative, Non-return to zero (NRZ) logic

 Tx: ― 5V to ―

SERIAL COMUNICATION INTERFACE……..

SERIAL COMUNICATION INTERFACE……..

• Signaling
• Single ended link
• Shielded cable with shield
connected to frame ground at
DTE.
• Signal ground connected to
power supply ground at both
ends.

• Connectors
• DB25 (RS 232): 25 pins, 21 signals
• DB9 (EIA 574): 9 pins, 9 signals
• RJ45 (EIA 561): 8 pins, 8 signals

SERIAL COMUNICATION INTERFACE……..
USCI Overview

The Universal Serial Communication Interface (USCI)
modules support multiple serial communication modes. Different
USCI modules support different modes. Each different USCI module
is named with a different letter.

The USCI_Ax modules support:
• UART mode
• Pulse shaping for IrDA communications
• Automatic baud rate detection for LIN communications
• SPI mode

The USCI_Bx modules support:
• I2C mode
• SPI mode

SERIAL COMUNICATION INTERFACE……..
COMMUNICATION MODULE COMPARISON

 USCI Introduction: SPI Mode
 In synchronous mode, the USCI connects the MSP430 to an external

system via three or four pins: UCxSIMO, UCxSOMI, UCxCLK, and
UCxSTE. SPI mode is selected when the UCSYNC bit is set and SPI
mode (3-pin or 4-pin) is selected with the UCMODEx bits.

 SPI mode features include:
 7- or 8-bit data length
 LSB-first or MSB-first data transmit and receive
 3-pin and 4-pin SPI operation
 Master or slave modes
 Independent transmit and receive shift registers
 Separate transmit and receive buffer registers
 Continuous transmit and receive operation
 Selectable clock polarity and phase control
 Programmable clock frequency in master mode
 Independent interrupt capability for receive and transmit
 Slave operation in LPM4

SERIAL COMUNICATION INTERFACE……....

Communication Peripherals in the MSP430

Universal Serial Interface
Universal Serial Communication Interface

1. Asynchronous channel, USCI_A
2. Synchronous channel, USCI_B

Universal Synchronous/Asynchronous Receiver/Transmitter
Bit-Banging

a. Synchronous masters
b. Synchronous slaves
c. Asynchronous communication

MSP430 USART Module

USART Switched to the UART Mode

USART Control Registers Used in the UART Mode

SERIAL PERIPHERAL INTERFACE (SPI)

Serial peripheral interface between a master and a single slave

SERIAL PERIPHERAL INTERFACE (SPI)
SPI requires :

- four wires (plus ground) and
- transmits data simultaneously in both directions (full duplex)

between two devices.
- “master in, slave out” (MISO) and
- “master out, slave in” (MOSI).
- Other terms are widely used, such as SDI, SI, or DIN for serial data

in and SDO, SO, or DOUT for serial data out.
- Clock signal including SCLK, SPSCK, and SCK.
- The final signal selects the slave.
- This is usually active low and labeled SS for slave select, CS for chip

select, or CE for chip enable.
- A slave should drive its output only when SS is active; the output

should float at other times in case another slave is selected.
- In some modes of SPI, the first bit should be placed on the output

when SS becomes active to start a new transfer.

SERIAL PERIPHERAL INTERFACE (SPI)

 The concept of SPI is based on two shift registers, one in
each device, which are connected to form a loop.

 The registers usually hold 8 bits.
 Each device places a new bit on its output from the most

significant bit (msb) of the shift register when the clock has
a negative edge and reads its input into the lsb of the shift
register on a positive edge of the clock.

 Thus a bit is transferred in each direction during each
clock cycle.

 After eight cycles the contents of the shift registers have
been exchanged and the transfer is complete.

 Transmission and reception are clearly inseparable: Thus a
byte must be transmitted in order to receive a byte.

SERIAL PERIPHERAL INTERFACE (SPI)

 For example, an external DAC configured as an SPI slave
may never need to return digital data to a microcontroller
so there is no need for the MISO connection.

 However, the same steps always take place internally: The
only difference is that the output of the DACs shift register
never leaves the chip.

 This contrasts with asynchronous communication, where
transmission and reception are independent.

 The SS line can sometimes be omitted if only two devices
are connected, in which case the slave’s SS pin should be
tied to ground so that it is enabled permanently.

SERIAL PERIPHERAL INTERFACE (SPI)

A complete transfer of 4
bits using SPI in mode 0

(CPHA = 0, CPOL = 0).

A complete transfer of 4
bits using SPI in mode 3

(CPHA = 1, CPOL = 1)

CPHA - clock phase bit
CPOL - clock polarity bit
CKPL = CPOL for the polarity
CKPH = CPHA for the phase

SERIAL PERIPHERAL INTERFACE (SPI)

Two ways of connecting two slaves to a single master using SPI.
(a) A slave can be selected individually by providing separate SS lines.
(b)All slaves can be connected in a “daisy chain,” in which case they must all be

updated together.

SERIAL PERIPHERAL INTERFACE (SPI) with USI

Simplified block diagram of the USI in SPI mode (USII2C = 0)
with the principal bits that configure it. The path for data through the shift register

is emphasized with heavy lines.

SERIAL PERIPHERAL INTERFACE (SPI) with USCI

Simplified block diagram of the USCI_B0 module in SPI master mode

USCI Operation: SPI Mode
 In SPI mode, serial data is transmitted and received by multiple

devices using a shared clock provided by the master.
 An additional pin, UCxSTE, is provided to enable a device to

receive and transmit data and is controlled by the master.
 Three or four signals are used for SPI data exchange:

 UCxSIMO: Slave in, master out
 – Master mode: UCxSIMO is the data output line.
 – Slave mode: UCxSIMO is the data input line.

 UCxSOMI: Slave out, master in
 – Master mode: UCxSOMI is the data input line.
 – Slave mode: UCxSOMI is the data output line.

 UCxCLK: USCI SPI clock
 – Master mode: UCxCLK is an output.
 – Slave mode: UCxCLK is an input.

 UCxSTE: Slave transmit enable
 Used in 4-pin mode to allow multiple masters on a single bus. Not

used in 3-pin mode.

USCI Operation: SPI Mode

 USCI Initialization and Reset
 The USCI is reset by a PUC (Power up clear)or by the UCSWRST bit.

 Initializing or Re-Configuring the USCI Module

 The recommended USCI initialization/re-configuration process is:

1. Set UCSWRST (BIS.B #UCSWRST,&UCxCTL1)

2. Initialize all USCI registers with UCSWRST=1 (including UCxCTL1)

3. Configure ports

4. Clear UCSWRST via software (BIC.B #UCSWRST,&UCxCTL1)

5. Enable interrupts (optional) via UCxRXIE and/or UCxTXIE

 Character Format
 The USCI module in SPI mode supports 7-bit and 8-bit character lengths

selected by the UC7BIT bit. In 7-bit data mode, UCxRXBUF is LSB justified and
the MSB is always reset. The UCMSB bit controls the direction of the transfer
and selects LSB or MSB first.

USCI Operation: SPI Mode

 Master Mode

USCI Operation: SPI Mode

USCI Master and External Slave

- USCI as a master in both 3-pin and 4-pin configurations.
- The USCI initiates data transfer when data is moved to the transmit data

buffer UCxTXBUF.
- The UCxTXBUF data is moved to the TX shift register when the TX shift

register is empty, initiating data transfer on UCxSIMO starting with either the most-
significant or least-significant bit depending on the UCMSB setting.

 Data on UCxSOMI is shifted into the receive shift register on the
opposite clock edge. When the character is received, the receive
data is moved from the RX shift register to the received data
buffer UCxRXBUF and the receive interrupt flag, UCxRXIFG, is
set, indicating the RX/TX operation is complete.

 A set transmit interrupt flag, UCxTXIFG, indicates that data has
moved from UCxTXBUF to the TX shift register and UCxTXBUF
is ready for new data. It does not indicate RX/TX completion.

 To receive data into the USCI in master mode, data must be
written to UCxTXBUF because receive and transmit operations
operate concurrently.

USCI Operation: SPI Mode

 In 4-pin master mode, UCxSTE is used to prevent conflicts with
another master and controls the master as described in Table 16-1.
When UCxSTE is in the master-inactive state:

 UCxSIMO and UCxCLK are set to inputs and no longer drive the bus
 The error bit UCFE is set indicating a communication integrity

violation to be handled by the user.
 The internal state machines are reset and the shift operation is aborted.

 If data is written into UCxTXBUF while the master is held inactive by
UCxSTE, it will be transmit as soon as UCxSTE transitions to the
master-active state. If an active transfer is aborted by UCxSTE
transitioning to the master-inactive state, the data must be re-written
into UCxTXBUF to be transferred when UCxSTE transitions back to the
master-active state. The UCxSTE input signal is not used in 3-pin
master mode.

USCI Operation: SPI Mode

 Master Mode

USCI Operation: SPI Mode

 Slave Mode

USCI as a slave in both 3-pin and 4-pin configurations.

UCxCLK is used as the input for the SPI clock and must be supplied by the
external master.

The data-transfer rate is determined by this clock and not by the internal bit
clock generator.

Data written to UCxTXBUF and moved to the TX shift register before the start of
UCxCLK is transmitted on UCxSOMI.

Data on UCxSIMO is shifted into the receive shift register on the opposite edge
of UCxCLK and moved to UCxRXBUF when the set number of bits are received.

When data is moved from the RX shift register to UCxRXBUF, the UCxRXIFG
interrupt flag is set, indicating that data has been received.

The overrun error bit, UCOE, is set when the previously received data is not read
from UCxRXBUF before new data is moved to UCxRXBUF.

Slave Mode

USCI Slave and External Master

In 4-pin slave mode, UCxSTE is used by the slave to enable the transmit and receive operations and is
provided by the SPI master. When UCxSTE is in the slave-active state, the slave operates normally.

When UCxSTE is in the slave- inactive state:

• Any receive operation in progress on UCxSIMO is halted
• UCxSOMI is set to the input direction
• The shift operation is halted until the UCxSTE line transitions into the slave transmit active state.

The UCxSTE input signal is not used in 3-pin slave mode.

SPI Enable

 When the USCI module is enabled by clearing the UCSWRST bit it is ready to
receive and transmit. In master mode the bit clock generator is ready, but is not
clocked nor producing any clocks. In slave mode the bit clock generator is
disabled and the clock is provided by the master.

 A transmit or receive operation is indicated by UCBUSY = 1.

 A PUC or set UCSWRST bit disables the USCI immediately and any active
transfer is terminated.

 Transmit Enable

 In master mode, writing to UCxTXBUF activates the bit clock generator and the
data will begin to transmit.

 In slave mode, transmission begins when a master provides a clock and, in 4-pin
mode, when the UCxSTE is in the slave-active state.

 Receive Enable

 The SPI receives data when a transmission is active. Receive and transmit
operations operate concurrently.

Serial Clock Control
Serial Clock Polarity and Phase

USCI SPI Timing with UCMSB = 1

SPI Interrupts
 SPI Transmit Interrupt Operation

 SPI Receive Interrupt Operation

 USCI Interrupt Usage

Shared Receive Interrupt Vectors Software Example

Shared Transmit Interrupt Vectors Software Example

Inter-integrated Circuit Bus
 The I²C bus uses only two bidirectional lines:

 Serial data (SDA)
 Serial clock (SCL)

-of course there must be a connection for ground as well.
-It is often called the two-wire interface.

Thus I²C provides the full functionality of a bus while using fewer
lines than SPI.

The first is that it is slow, only 100 kbit/sec in standard mode, because
of the electrical arrangements needed to avoid damage if two nodes
attempt to transmit simultaneously.

Second, a protocol must be observed: You cannot merely transmit the
data and nothing more, as in SPI. More hardware is needed than a simple
shift register and transmissions must be controlled by logic such as a state
machine.

This may be implemented either in hardware, as in the USCI_B, or in
software for the USI.

 Transfers on the bus take place between a master and a slave.
 Each slave has a unique address, which is usually 7 bits long.
 The master starts the transfer, provides the clock, addresses a particular slave,

manages the transfer, and finally terminates it.
 There may be more than one master on the bus although only one can be in

control at a time.
 I²C have only a single master and a few slaves—sometimes just one.
 SPI would be simpler in this case but I²C saves pins.

 Two-wire multi-master multi-slave synchronous half-duplex bus
 Signals: Single-ended voltage, 100 kHz to 5 MHz, short-range.
 open-drain lines with passive pull-up to +5 V or +3.3 V:
 Serial Data (SDA), Serial Clock.

 Bit rate: 10 kbps (low-speed), 100 kbps (standard), 400 kbps (fast mode, Fm),
1 Mbps (Fm+), 3.4 Mbps (high-speed).

 Devices with unique addresses (7, 10, or 16 bit address space).

 No. of nodes: Limited by the address space & the total bus capacitance of 400
pF.

Inter-integrated Circuit Bus

Inter-integrated Circuit Bus
Basic Features

 Lines: Serial Clock (SCL), Serial Data (SDA); Device address: 7-bit

 Node types
 Master: Generates clock; Initiates communication with slaves.

 Slave: Receives clock; Responds when addressed by the master.

 Multi-master bus: Master and slave roles may be changed between
messages, after a STOP bit.

 Hardware overhead: Clock stretching by slave.

 Protocol overheads: Slave address, [Register address within the
slave device], Per-byte ACK/NACK bits.

 Throughput: limited by overheads & clock stretching by slave.

Hardware for I²C

Electronic interface to the I²C bus. The two lines of the bus, SCL and
SDA, are bidirectional and pulled up to VCC with resistors Rp.
(a) A master device can read and write both SCL and SDA independently.
(b)(b) A slave may have an identical interface but
(c) (c) most slaves cannot drive SCL.

I²C Protocol

Simple transfer over I²C. The master writes an address, which is
acknowledged by the slave, and reads a single byte from the slave.

From the idle state with both SCL and SDA high:
 1. The master sends a start condition (S) by pulling SDA low while SCL is high.
 2. The master starts the clock and puts the first bit of the address on SDA after SCL has gone

low.
 3. The value on SDA is valid after SCL has gone high and is read by all slaves on the bus.
 4. The last two steps are repeated until all 7 bits of the address have been sent.
 5. The final bit of the first byte specifies the direction for the rest of the transfer. Here it is

R/W= 1, which shows that the master wishes to read data from the slave.
 6. The ninth bit is the acknowledgment (A or Ack), which is low and is sent by the slave that

recognizes its address.
 7. The master must check that a slave acknowledges the address and abort the transfer if the

low bit is missing.
 8. The next 8 clock cycles are used to transmit 1 byte of data from the slave to the master.

The master continues to provide the clock.
 9. The ninth bit would normally be an acknowledgment but this is the exceptional case: The

master does not acknowledge the final byte that it wishes to read in a transfer. This signals to
the slave that the master has received sufficient data. Here the master expects only a single
byte so it does not pull SDA low. This is a “not acknowledgment” signal (A or Nack).

 10. There is a final cycle of the clock to set up the stop signal. The master pulls SDA low after
the falling edge of the clock, which is the normal time for changing SDA. It releases it again
after the final rising edge of the clock to give a rising edge on SDA while SCL is high, which
provides the stop signal (P).

Inter-Integrated Circuit Bus (I2C or I2C)

Two-wire multi-master multi-slave synchronous half-
duplex bus
 Signals: Single-ended voltage, 100 kHz to 5 MHz, short-

range.
 2 open-drain lines with passive pull-up to +5 V or +3.3 V:

Serial Data (SDA), Serial Clock.
 Bit rate: 10 kbps (low-speed), 100 kbps (standard), 400

kbps (fast mode, Fm), 1 Mbps (Fm+), 3.4 Mbps (high-
speed).

 Devices with unique addresses (7, 10, or 16 bit address
space).

 No. of nodes: Limited by the address space & the total
bus capacitance of 400 pF.

 Features
 Lines: Serial Clock (SCL), Serial Data (SDA); Device

address: 7-bit
 Node types

 Master: Generates clock; Initiates communication with slaves.
 Slave: Receives clock; Responds when addressed by the master.

 Multi-master bus: Master and slave roles may be changed
between messages, after a STOP bit.

 Hardware overhead: Clock stretching by slave.
 Protocol overheads: Slave address, [Register address within

the slave device], Per-byte ACK/NACK bits.
 Throughput: limited by overheads & clock stretching by

slave.

Inter-Integrated Circuit Bus (I2C or I2C)

Inter-Integrated Circuit Bus (I2C or I2C)

Inter-Integrated Circuit Bus (I2C or I2C)

Data Transfer
 Operation sequence

 Master: Sends START bit , slave address (7-bit),
read/write bit (write = 0, read =1).

 Slave: Responds (after receiving the address and
read/write bit) with ACK bit (active low).

 Master: Continues in Tx/Rx mode.
 Slave: Continues in complementary (Rx/Tx) mode.

 Bit sequence
 Address & data bits: SDA transitions with SCL low; MSB

first.
 Start bit: SDA high-to-low transition with SCL high.
 Stop bit: SDA low-to-high transition with SCL high.

Inter-Integrated Circuit Bus (I2C or I2C)

Write-to-Slave: Master repeatedly sends a byte with the
slave sending an ACK bit.
 Read-from-Slave: Master repeatedly receives a byte from the

slave & sends an ACK bit after every byte but the last one.

 End of transfer: Master sends STOP to release the bus or
another START bit to retain bus control for another transfer.

 Logic: Pulled low (any device) = 0, Floating (all devices) = 1.

 Clock stretching using SCL: Addressed slave holds SCL low
after receiving (or sending) a byte, if not ready for more
data. The master waits for SCL to go high. Waits for an
additional minimum time (standard: 4 μs) before pulling it
low.

Inter-Integrated Circuit Bus (I2C or I2C)

Bidirectional Buffering & Multiplexing

 Buffering: Splitting large bus segments into smaller
ones to limit the capacitance of a bus segment .

 Multiplexing: Separating multiple devices with the
same address.

Inter-Integrated Circuit Bus (I2C or I2C)

 Timing Diagram

 SDA changed after the SCL falling edge & sampled on the SCL
rising edge (avoids false marker detection)

 START bit (S): SDA pulled low while SCL high.

 First bit (B1) written on SDA by Tx while SCL low. SDA read by
Rx when SCL rises.

 Write & read repeated (B2, ..): SDA transitioning while SCL
low; SDA read while SCL rises.

 STOP bit (P): SDA high while SCL is high.

Inter-Integrated Circuit Bus (I2C or I2C)

Applications

 Low pin count, Low cost, Low to moderate speed
 EEPROM for configuration data; NVRAM for user settings.

 Real-time clock; Low speed DACs and ADCs; Sensors with
digital readout; Power supplies with digital control.

Limitations
 Conflict of slave addresses. May be solved by having device

pins for user settable address.

 Spurious address detection due to speed mismatch.

 Throughput degradation due to clock stretching. Separate
segments for low and high latency devices.

 Problems due to shared bus.

Asynchronous Serial Communication

 The main reason is simplicity.
 Asynchronous serial communication can be managed in

hardware by a peripheral called a universal asynchronous
receiver/transmitter, which is not complicated and is therefore
built into many microcontrollers.

 Even if this is not available, it can be emulated with a timer
assisted by software.

 USB is much more difficult to handle.

 In practice it is not a big problem to use an asynchronous serial
link to a personal computer because USB–serial converters are
readily available.

 They provide “virtual COM ports” under Windows, which appear
much like the real hardware on older machines.

Asynchronous Serial Communication

 Asynchronous serial communication usually requires only a
single wire for each direction plus a common ground.

 Most general-purpose connections are full duplex, meaning that
data can be sent simultaneously in both directions. These act
independently, unlike SPI.
 (There are usually no further control lines, nor is there anything like

the protocol required to run a I²C bus; characters are simply sent
when required.)

 It really is straightforward, which explains its continuing
popularity.

 Issues such as the detection and correction of errors are usually
handled by the application that supervises the communication.
 For example, a block of data may be followed by a checksum to

confirm that it has been received correctly.

 Asynchronous links usually connect only two pieces of equipment
but a few buses use asynchronous communication.

Asynchronous Serial Communication
Format of Data for Asynchronous Transmission

 The usual format of asynchronous data in the section “Operation of Timer_A in the Sampling
Mode”.

 Data are sent in short frames, each of which typically contains a single byte.

 Two examples are shown in Figure .

The line idles high and each frame contains

 One low start bit (ST).

 Eight data bits, usually lsb first.

 One high stop bit (SP).

 The bits are either high or low and have no gaps between them, a format known as non-return
to zero (NRZ).

 They are usually sent with lsb first, which is the reverse order compared with I²C or the usual
sequence on SPI.

 The format of the frame is called 8-N-1 because there are 8 bits of data, no parity bit, and 1 stop
bit. You may occasionally encounter other formats.

 For example, the basic ASCII code has only 128 values so 7 bits of data were often sent in
the past. The eighth bit was sometimes used for parity as a simple check for errors in
transmission.

 Aparity bit may also be added to 8-bit data and the MSP430 bootstrap loader uses this
format.

Asynchronous Serial Communication

Clocks and received data in a UART with the sampling clock running at 16 times the
baud rate. Reception starts when a falling edge at the beginning of a start bit is detected.
The two input signals correspond to the latest and earliest edges that would trigger
reception to start at the same time. The low start bit is followed by a high lsb of the data.

Asynchronous Communication with the USCI_A

 The USCI_A has several modes of operation.

 First, it can be used for SPI in the same way as USCI_B by
setting the UCSYNC bit in UCA0CTL0.

 If this bit is clear, there are four asynchronous modes. These are
selected with the UCMODExx bits, also in UCA0CTL0.
 Standard UART mode, UCMODExx= 00.

 Multiprocessor modes, UCMODExx=01 or 10.

 These are used to detect addresses when more than two devices are
used on a bus, such as RS-485.

 Automatic baud rate detection, UCMODExx=11. This is particularly
intended for LIN.

a. Setting the Baud Rate with the USCI_A

b. Operation of the USCI_A

Asynchronous Communication with the USCI_A
Setting the Baud Rate with the USCI_A

The most complicated aspect of configuring the USCI_A is setting the baud rate. For a
start, there are three clocks in the USCI_A:

• BRCLK is the input to the module (SMCLK, ACLK, or UCA0CLK).
• BITCLK controls the rate at which bits are received and transmitted.

Ideally its frequency should be the same as the baud rate, fBITCLK= fbaud.
• BITCLK16 is the sampling clock in oversampling mode, with a
frequency fBITCLK16= 16fBITCLK.

The periods of these clocks are TBITCLK = 1/fBITCLK and so on. There are two modes for
setting the baud rate. These are selected with the UCOS16 bit in the modulation control
register UCA0MCTL.

Asynchronous Serial Communication

Asynchronous Serial Communication

