
Prepared By

Dr. D. Jayakumar, M.Tech., Ph.D.,

Associate Professor, Dept Of ECE

Kuppam Engineering College, Kuppam

8086

MICROPROCESSOR

8086 Microprocessor

• 16-bit Arithmetic Logic Unit

• 16-bit data bus (8088 has 8-bit data bus)

• 20-bit address bus - 220 = 1,048,576 = 1 meg

The address refers to a byte in memory. In the 8088, these bytes come in on
the 8-bit data bus. In the 8086, bytes at even addresses come in on the low
half of the data bus (bits 0-7) and bytes at odd addresses come in on the upper
half of the data bus (bits 8-15).

The 8086 can read a 16-bit word at an even address in one operation and at an
odd address in two operations. The 8088 needs two operations in either case.

The least significant byte of a word on an 8086 family microprocessor is at the
lower address.

8086 Features

Simplified CPU Design

Data Registers

Address Registers

Control

Unit

Arithmetic

Logic Unit
Status

Flags

Address Bus

Data Bus

Memory

CS

SS

DS

ES

Segment

BP

Index

SP

SI

DI

AH

BH

CH

DH DL

CL

BL

AL

General Purpose

Status and Control

Flags

IP

AX

BX

CX

DX

Intel 16-bit Registers

• The 8086 has two parts, the Bus Interface Unit (BIU) and the
Execution Unit (EU).

• The BIU fetches instructions, reads and writes data, and computes the
20-bit address.

• The EU decodes and executes the instructions using the 16-bit ALU.

• The BIU contains the following registers:

 IP - the Instruction Pointer
CS - the Code Segment Register
DS - the Data Segment Register
SS - the Stack Segment Register
ES - the Extra Segment Register

The BIU fetches instructions using the CS and IP, written CS:IP, to contract
 the 20-bit address. Data is fetched using a segment register (usually the DS)
and an effective address (EA) computed by the EU depending on the
addressing mode.

8086 Architecture

The EU contains the following 16-bit registers:

AX - the Accumulator
BX - the Base Register
CX - the Count Register
DX - the Data Register

SP - the Stack Pointer \
 defaults to stack segment

BP - the Base Pointer /
SI - the Source Index Register
DI - the Destination Register

These are referred to as general-purpose registers, although, as seen by
 their names, they often have a special-purpose use for some instructions.

The AX, BX, CX, and DX registers can be considers as two 8-bit registers, a
High byte and a Low byte. This allows byte operations and compatibility with
the previous generation of 8-bit processors, the 8080 and 8085. 8085 source
code could be translated in 8086 code and assembled. The 8-bit registers are:

AX --> AH,AL
BX --> BH,BL
CX --> CH,CL
DX --> DH,DL

Registers

8086 Programmer’s Model

ES

CS

SS

DS

IP

AH

BH

CH

DH

AL

BL

CL

DL

SP

BP

SI

DI

FLAGS

AX

BX

CX

DX

Extra Segment

Code Segment

Stack Segment

Data Segment

Instruction Pointer

Accumulator

Base Register

Count Register

Data Register

Stack Pointer

Base Pointer

Source Index Register

Destination Index Register

BIU registers
(20 bit adder)

EU registers

8086/88 internal registers 16 bits (2 bytes each)

AX, BX, CX and DX are two

bytes wide and each byte can

be accessed separately

These registers are used as

memory pointers.

Flags will be discussed later

Segment registers are used

as base address for a segment

in the 1 M byte of memory

The 8086/8088 Microprocessors: Registers

• Registers

– Registers are in the CPU and are referred to by specific names

– Data registers

• Hold data for an operation to be performed

• There are 4 data registers (AX, BX, CX, DX)

– Address registers

• Hold the address of an instruction or data element

• Segment registers (CS, DS, ES, SS)

• Pointer registers (SP, BP, IP)

• Index registers (SI, DI)

– Status register

• Keeps the current status of the processor

• On an IBM PC the status register is called the FLAGS register

– In total there are fourteen 16-bit registers in an 8086/8088

Data Registers: AX, BX, CX, DX

• Instructions execute faster if the data is in a register

• AX, BX, CX, DX are the data registers

• Low and High bytes of the data registers can be accessed

separately

– AH, BH, CH, DH are the high bytes

– AL, BL, CL, and DL are the low bytes

• Data Registers are general purpose registers but they also

perform special functions

• AX

– Accumulator Register

– Preferred register to use in arithmetic, logic and data transfer instructions

because it generates the shortest Machine Language Code

– Must be used in multiplication and division operations

– Must also be used in I/O operations

• BX

– Base Register

– Also serves as an address register

• CX

– Count register

– Used as a loop counter

– Used in shift and rotate operations

• DX

– Data register

– Used in multiplication and division

– Also used in I/O operations

Pointer and Index Registers

• Contain the offset addresses of memory locations

• Can also be used in arithmetic and other operations

• SP: Stack pointer

– Used with SS to access the stack segment

• BP: Base Pointer

– Primarily used to access data on the stack

– Can be used to access data in other segments

• SI: Source Index register

– is required for some string operations

– When string operations are performed, the SI register points to

memory locations in the data segment which is addressed by the

DS register. Thus, SI is associated with the DS in string

operations.

• DI: Destination Index register
– is also required for some string operations.

– When string operations are performed, the DI register points to

memory locations in the data segment which is addressed by the

ES register. Thus, DI is associated with the ES in string

operations.

• The SI and the DI registers may also be used to access data

stored in arrays

Segment Registers - CS, DS, SS and ES

• Are Address registers

• Store the memory addresses of instructions and data

• Memory Organization

– Each byte in memory has a 20 bit address starting with 0 to 220-1 or 1

meg of addressable memory

– Addresses are expressed as 5 hex digits from 00000 - FFFFF

– Problem: But 20 bit addresses are TOO BIG to fit in 16 bit registers!

– Solution: Memory Segment

• Block of 64K (65,536) consecutive memory bytes

• A segment number is a 16 bit number

• Segment numbers range from 0000 to FFFF

• Within a segment, a particular memory location is specified with an offset

• An offset also ranges from 0000 to FFFF

Segmented Memory

Segmented memory addressing: absolute (linear) address is a
combination of a 16-bit segment value added to a 16-bit offset

00000

10000

20000

30000

40000

50000

60000

70000

80000

90000

A0000

B0000

C0000

D0000

E0000

F0000

8000:0000

8000:FFFF

seg ofs

8000:0250

0250

one segment

Memory Address Generation

• The BIU has a dedicated adder for

determining physical memory addresses

Intel

Physical Address (20 Bits)

Adder

Segment Register (16 bits) 0 0 0 0

Offset Value (16 bits)

Example Address Calculation

• If the data segment starts at location 1000h
and a data reference contains the address
29h where is the actual data?

Intel

Offset: 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1

2 9

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Segment:

0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 Address:

Segment:Offset Address

• Logical Address is specified as segment:offset

• Physical address is obtained by shifting the segment address 4

bits to the left and adding the offset address

• Thus the physical address of the logical address A4FB:4872 is

 A4FB0

+ 4872

 A9822

Your turn . . .

What linear address corresponds to the segment/offset

address 028F:0030?

028F0 + 0030 = 02920

Always use hexadecimal notation for addresses.

Your turn . . .

What segment addresses correspond to the linear address

28F30h?

Many different segment-offset addresses can produce the

linear address 28F30h. For example:

 28F0:0030, 28F3:0000, 28B0:0430, . . .

The Code Segment

Memory

Segment Register

Offset

Physical or
Absolute Address

0

+

CS:

IP

0400H

0056H

4000H

4056H

0400

0056

04056H

The offset is the distance in bytes from the start of the segment.
The offset is given by the IP for the Code Segment.
Instructions are always fetched with using the CS register.

CS:IP = 400:56
Logical Address

 0H

0FFFFFH

The physical address is also called the absolute address.

The Data Segment

Memory

Segment Register

Offset

Physical Address

+

DS:

SI

05C0

0050

05C00H

05C50H

05C0 0

0050

05C50H

Data is usually fetched with respect to the DS register.
The effective address (EA) is the offset.
The EA depends on the addressing mode.

DS:EA

0H

0FFFFFH

The Stack Segment

Memory

Segment Register

Offset

Physical Address

+

SS:

SP

0A00

0100

0A000H

0A100H

0A00 0

0100

0A100H

The stack is always referenced with respect to the stack segment register.
The stack grows toward decreasing memory locations.
The SP points to the last or top item on the stack.

PUSH - pre-decrement the SP
POP - post-increment the SP

The offset is given by the SP register.

SS:SP

0H

0FFFFFH

Flags

Carry flag

Parity flag

Auxiliary flag

Zero

Overflow

Direction

Interrupt enable

Trap

Sign
6 are status flags

3 are control flag

• CF (carry) Contains carry from leftmost bit following

arithmetic, also contains last bit from a shift or rotate

operation.

Flag Register

Flag O D I T S Z A P C

Bit no. 15 14 13 12 11
1

0
9 8 7 6 5 4 3 2 1 0

• Conditional flags:

– They are set according to some results of arithmetic operation. You do

not need to alter the value yourself.

• Control flags:

– Used to control some operations of the MPU. These flags are to be set

by you in order to achieve some specific purposes.

Flag Register

• OF (overflow) Indicates overflow of the
leftmost bit during arithmetic.

• DF (direction) Indicates left or right for
moving or comparing string data.

• IF (interrupt) Indicates whether external
interrupts are being processed or ignored.

• TF (trap) Permits operation of the processor
in single step mode.

• SF (sign) Contains the resulting sign of an
arithmetic operation (1=negative)

• ZF (zero) Indicates when the result of
arithmetic or a comparison is zero. (1=yes)

• AF (auxiliary carry) Contains carry out of
bit 3 into bit 4 for specialized arithmetic.

• PF (parity) Indicates the number of 1 bits
that result from an operation.

•Addressing modes

– Register and immediate modes we have already

seen

 MOV AX,1

 MOV BX,AX

 register immediate

3F03 - 80x86 assembler
• Typical addressing modes

– Absolute address mode

 MOV AX,[0200]

 value stored in memory location DS:0200

3F03 - 80x86 assembler
• Typical addressing modes

– Register indirect

 MOV AX,[BX]

 value stored at address contained in DS:BX

3F03 - 80x86 assembler
• Typical addressing modes

– Displacement

 MOV DI,4

 MOV AX,[0200+DI]

 value stored at DS:0204

3F03 - 80x86 assembler
• Typical addressing modes

– Indexed

 MOV BX,0200

 MOV DI,4

 MOV AX,[BX+DI]

 value stored at DS:0204

3F03 - 80x86 assembler
• Typical addressing modes

– Memory indirect

 MOV DI,0204

 MOV BX,[DI]

 MOV AX,[BX]

If DS:0204 contains 0256,

then AX will contain

whatever is stored at

DS:0256

3F03 - 80x86 assembler
• Typical addressing modes

– Memory indirect

 MOV DI,0204

 MOV BX,[DI]

 MOV AX,[BX]

If DS:0204 contains 0256,

then AX will contain

whatever is stored at

DS:0256

Byte addresses in memory

0200 0204

0250 0256

0256

1234

DI

BX

AX = 1234

8086 in Maximum Mode
The IBM PC is a maximum mode 8088 system. When an 8086/8088 is used
in the maximum mode (MN/MX pin grounded) it requires the use of an 8288
Bus Controller. The system can support multiple processors on the system
bus by the use of an 8289 Bus Arbiter.

The following signals now come from the 8288: ALE, DT/R’, DEN, and INTA’.

The M/IO’, RD’, and WR’ signals are replaced by:

MRDC’ - memory read command
MWTC’ - memory write command
IORC’ - I/O read command
IOWC’ - I/O write command
AMWC’ - Advanced memory write command
AIOWC’ - Advanced I/O write command

The advanced commands become active earlier in the cycle to give devices
an earlier indication of a write operation.

IV-1

8086 Maximum Mode

When in the maximum mode, the 8086/8088 has 3 status lines that are
connected to the 8288 and provide it with the information it needs to
generate the system bus signals. The information provided by the status
bits is as follows.

S2’ S1’ S0’ operation signal
 0 0 0 Interrupt Acknowledge INTA’
 0 0 1 Read I/O port IORC’
 0 1 0 Write I/O port IOWC’, AIOWC’
 0 1 1 Halt none
 1 0 0 Instruction Fetch MRDC’
 1 0 1 Read Memory MRDC’
 1 1 0 Write Memory MWTC’, AMWC’
 1 1 1 Passive none

IV-2

Direct Memory Access - DMA
DMA allows data to go between memory and a peripheral, such as a disk
drive, without going through the cpu.

The DMA controller takes over the address bus, data bus, and control bus.
The 8237A DMA Controller is a commonly used device and is in the IBM PC.

Figure 11-4 is a simplified block diagram showing the use of a DMA controller.
For example, to read a disk file the following operations occur.

1. Send a series of commands to the disk controller to find and read a
 block of data.
2. When the controller has the first byte of the block, it sends a DMA
 request DREQ to the DMA controller.
3. If that input of the DMA controller is unmasked, the DMA controller
 sends a hold-request HQR to the cpu.
4. The cpu responds with a hold-acknowledge HLDA and floats its buses.
5. The DMA controller then takes control of the buses.
6. The DMA controller sends out the memory address and DMA
 acknowledge DACK0 to the disk controller.
7. The DMA controller asserts the MEMW’ and IOR’ lines.

IV-4

Memory

 IV-6

Terminology

Volatile - data is lost when power is turned off.
Nonvolatile - retains data when powered off.

Random Access - all data locations accessed in the same amount of time.
Sequential Access - data accessed in varying amounts of time, e.g., tape.

ROM - Read Only Memory.
RAM - Random Access Memory

By convention, RAM in a PC is really Read/Write Memory and ROM
(EPROM) in a PC, although random access memory, is not referred to
as RAM.

Examples

VOLATILE NONVOLATILE
Static RAM ROM, PROM, EPROM, EEPROM, FLASH
Dynamic RAM Disk, tape

 Magnetic core, magnetic bubble

RLH - Fall 1997 47

Interface 8086 to 6116 static RAM
8086

A ____

BHE

ALE

A(10-0)

D(7-0)
 __

R/W
OE*

CS*

A(10-0)

 __

R/W

OE*
CS*

D

D(7-0)

20

Latch

Addr

Decoder

A(11-1)

21

A0, BHE*

A(19-12)

A(11-1)

 __

M/IO

RD

WR

READY

low byte

(even)

hi byte

(odd)

D(7-0)

D(15-8)

16

A0

RAMCS*

MEM*

BHE*

Wait

State

Gen

6116 (2K x8)

