Elliptic Curve Arithmetic

Why ECC?

$\checkmark \quad$ Good security even with far smallest key than RSA
\checkmark Reduce the processing overhead
Basics for ECC:
Abelian Groups:
$\checkmark\{G, \bullet\}$ is a set of elements with a binary operations
It should satisfy the following properties

- Closure : if a and b belongs to G, than $a \bullet b$ also in G.
- Associative : $\mathrm{a} \bullet(\mathrm{b} \bullet \mathrm{c})=(\mathrm{a} \bullet \mathrm{b}) \bullet \mathrm{c}$ for all $\mathrm{a}, \mathrm{b}, \mathrm{c}$ in G .
- Identity elements: $\mathrm{a} \bullet \mathrm{e}=\mathrm{e} \bullet \mathrm{a}=\mathrm{a}$ for all a in G .
- Inverse element : a • $a^{\prime}=a^{\prime} \bullet a=e$.
- Commutative: $\mathrm{a} \bullet \mathrm{b}=\mathrm{b} \bullet$ a for $\mathrm{all} \mathrm{a}, \mathrm{b}$ in G .
\checkmark In Diffie-Hellman, keys are generated by exponentiation defined by repeated multiplication
- $a^{k} \bmod q=(a X a X a X \ldots . . . X a) \bmod q$
\checkmark In ECC, operations are in addition. Multiplication is defined by repeated addition.
- $a X k=(a+a+a+\ldots . .+a)$

ECC definition

* Elliptic curve is represented as $\mathrm{E}_{\mathrm{p}}(\mathrm{a}, \mathrm{b})$. P is a prime number and a, b are restricted to $\bmod p$
* The curve is represented by $y^{2}=x^{3}+a x+b$.
* Elliptic curves are not ellipse but the equation of ecc is described by calculation of circumference of ellipse (i.e. cubic equation with highest degree of 3)
* For determining the security of various elliptic curve ciphers, the number of points in a finite abelian group defined over an elliptic curve.
* In case of the finite group $E_{p}(a, b)$, the number of points N is bounded by:

$$
p+1-\sqrt{p} \leq N \leq p+1+2 \sqrt{p}
$$

* No. of points in $\mathrm{E}_{\mathrm{p}}(\mathrm{a}, \mathrm{b})$ is approximately equal to the number of elements in Z_{p}, namely p elements.

How the elliptic curve is Symmetric?

$$
y=\sqrt{x^{3}+a x+b}
$$

This gives a value of x as $\pm x$. So, each curve is symmetric curve about $y=0$.

Affine points: The points present in Elliptic curve
O points: There is a point called 0 point in which $P+(-P)$ becomes infinity.
ECC can be defined as EC over Z_{p} (prime curve) and EC over GF(2^{m}) (binary curve).
ECC can be used for key exchange and Encryption.

Elliptic curves over Z_{p} :
\checkmark The curve of this type is prime curve
\checkmark The variables and coefficients are restricted to elements of a finite field
\checkmark The values are restricted from 0 through p-1, If the values exceeds the range perform modulo p .
\checkmark The curveis represented by $y^{2} \bmod p=$ ($\left.x^{3}+a x+b\right) \bmod p$
\checkmark The curve is to be focused in only one of the quadrant from (0,0)through ($p-1, p-1$)
containing non negative integers
\checkmark The number of points N is bounded by

$$
p+1-\sqrt{p} \leq N \leq p+1+2 \sqrt{p}
$$

Addition

\checkmark Adding 2 points $\mathrm{P}\left(\mathrm{x}_{\mathrm{p}}, \mathrm{y}_{\mathrm{p}}\right)$ and $\mathrm{Q}\left(\mathrm{x}_{\mathrm{q}}, \mathrm{y}_{\mathrm{q}}\right)$ gives $R\left(x_{p} y_{r}\right)$.
\checkmark Steps:
\checkmark Find the slope λ :
$\checkmark \lambda=\left(y_{q}-y_{p}\right) /\left(x_{q}-x_{p}\right)$ if $P \neq Q$
$\checkmark \lambda=\left(3 x_{p}{ }^{2}+a\right) / 2 y_{p}$ if $P=Q$ where a is obtained from $E_{p}(a, b)$
\checkmark Find the sum: R (i.e. $\left.\left(x_{r}, y_{r}\right)\right)=P+Q$
$\checkmark \mathrm{x}_{\mathrm{r}}=\lambda^{2}-\mathrm{x}_{\mathrm{p}}-\mathrm{x}_{\mathrm{q}}$
$\checkmark y_{r}=\lambda\left(x_{p}-x_{r}\right)-y_{p}$

Negating a point:
\checkmark if $Q=\left(x_{q}, y_{q}\right)$
\checkmark then $-Q=-\left(x_{q}, y_{q}\right)=\left(x_{q},-\mathrm{y}_{\mathrm{q}}\right)$
Subtraction:
$\checkmark P-Q=\left(x_{p}, y_{p}\right)-\left(x_{q}, y_{q}\right)=\left(x_{p}, y_{p}\right)+\left(x_{q},-y_{q} \bmod p\right)$.
Now perform addition.
Multiplication:
\checkmark Only Scalar multiplication is possible. Multiplication between two points are not possible. Repeated addition is performed.
$\checkmark 2 P=P+P, 3 P=P+P+P$ and so on. Note for slope (λ) calculation use the formula $\mathrm{P}=\mathrm{Q}$.
\checkmark Division: Only Scalar division is possible. [1/a $\left.\left(x_{p}, y_{p}\right)\right]$ $=a^{-1}\left(x_{p}, y_{p}\right)$. Multiplication steps can be followed.

