Elliptic Curve Arithmetic

Why ECC?

- ✓ Good security even with far smallest key than RSA
- ✓ Reduce the processing overhead

Basics for ECC:

Abelian Groups:

- √ {G, •} is a set of elements with a binary operations
- ✓ It should satisfy the following properties
 - Closure: if a and b belongs to G, than a b also in G.
 - Associative : $a \bullet (b \bullet c) = (a \bullet b) \bullet c$ for all a,b,c in G.
 - Identity elements: a e = e a = a for all a in G.
 - Inverse element : $a \bullet a' = a' \bullet a = e$.
 - Commutative: a b = b a for all a, b in G.
- ✓ In Diffie-Hellman, keys are generated by exponentiation defined by repeated multiplication
 - a^k mod q = (aXaXaXXa) mod q
- ✓ In ECC, operations are in addition. Multiplication is defined by repeated addition.
 - aXk = (a+a+a+ +a)

ECC definition

- Elliptic curve is represented as E_p(a,b). P is a prime number and a,b are restricted to mod p
- \clubsuit The curve is represented by $y^2 = x^3 + ax + b$.
- Elliptic curves are not ellipse but the equation of ecc is described by calculation of circumference of ellipse (i.e. cubic equation with highest degree of 3)
- For determining the security of various elliptic curve ciphers, the number of points in a finite abelian group defined over an elliptic curve.
- In case of the finite group $E_p(a,b)$, the number of points N is bounded by:

$$p+1-\sqrt{p} \le N \le p+1+2\sqrt{p}$$

No. of points in $E_p(a,b)$ is approximately equal to the number of elements in Z_p , namely p elements.

How the elliptic curve is Symmetric?

$$y = \sqrt{x^3 + ax + b}$$

This gives a value of x as \pm x. So, each curve is symmetric curve about y=0.

- Affine points: The points present in Elliptic curve
- O points: There is a point called 0 point in which P + (-P) becomes infinity.
- ECC can be defined as EC over Z_p (prime curve) and EC over $GF(2^m)$ (binary curve).
- ECC can be used for key exchange and Encryption.

Elliptic curves over Z_p:

- ✓ The curve of this type is prime curve
- ✓ The variables and coefficients are restricted to elements of a finite field
- ✓ The values are restricted from 0 through p-1,
 If the values exceeds the range perform
 modulo p.
- ✓ The curve is represented by $y^2 \mod p = (x^3+ax+b) \mod p$
- ✓ The curve is to be focused in only one of the quadrant from (0,0)through (p-1,p-1) containing non negative integers
- ✓ The number of points N is bounded by $p+1-\sqrt{p} \le N \le p+1+2\sqrt{p}$

Addition

- ✓ Adding 2 points $P(x_p, y_p)$ and $Q(x_q, y_q)$ gives $R(x_r, y_r)$.
- ✓ Steps:
 - ✓ Find the slope λ :
 - $\checkmark \lambda = (y_q y_p) / (x_q x_p) \text{ if } P \neq Q$
 - $\checkmark \lambda = (3x_p^2 + a) / 2y_p$ if P = Q where a is obtained from $E_p(a,b)$
 - ✓ Find the sum: R (i.e. (x_r, y_r)) = P + Q
 - $\checkmark x_r = \lambda^2 x_p x_q$
 - $\checkmark y_r = \lambda (x_p x_r) y_p$

Negating a point:

- \checkmark if Q = (x_q, y_q)
- ✓ then $-Q = -(x_q, y_q) = (x_q, -y_q)$

Subtraction:

✓ P – Q = (x_p, y_p) – (x_q, y_q) = (x_p, y_p) + $(x_q, -y_q \text{ mod } p)$. Now perform addition.

Multiplication:

- ✓ Only Scalar multiplication is possible. Multiplication between two points are not possible. Repeated addition is performed.
- ✓ 2P = P+P, 3P = P+P+P and so on. Note for slope (λ) calculation use the formula P=Q.
- ✓ Division: Only Scalar division is possible. $[1/a(x_p,y_p)]$ = $a^{-1}(x_p,y_p)$. Multiplication steps can be followed.