
Artificial Intelligence
Subject Code: 20A05502T

UNIT IV – Natural Language Communication

• Communication

• Grammer
• Natural Language for Communication: Phrase structure grammars, Syntactic

Analysis, Augmented Grammars and semantic Interpretation, Machine
Translation, Speech Recognition

Communication

• A computer can use natural language to communicate with humans
and learn from what they have written.

• Alan Turing proposed his test for intelligence, he based it on language,
not art or haberdashery, perhaps because of its universal scope and
because language captures so much of intelligent behavior:

• a speaker (or writer) has the goal of communicating some knowledge,
then plans some language that represents the knowledge, and acts to
achieve the goal.

• The listener (or reader) perceives the language, and infers the
intended meaning.

• This type of communication via language has allowed civilization to
grow; it is our main means of passing along cultural, legal, scientific,
and technological knowledge

• There are three primary reasons for computers to do natural language
processing (NLP)

• To communicate with humans.

• To learn.

• To advance the scientific understanding of languages and language
use, using the tools of AI in conjunction with linguistics, cognitive
psychology, and neuroscience.

Grammar -Backus–Naur Form (BNF)

• write down a grammar for the language of first-order logic.

• A grammar is a set of rules that defines the tree structure of
allowable phrases, and a language is the set of sentences that follow
those rules.

• Natural languages do not work exactly like the formal language of
first-order logic—

• they do not have a hard boundary between allowable and
unallowable sentences, nor do they have a single definitive tree
structure for each sentence.

• Hierarchical structure is important in natural language.

• The word “Stocks” in “Stocks rallied on Monday” is not just a word,
nor is it just a noun;

• in this sentence it also comprises a noun phrase, which is the subject
of the following verb phrase.

• Syntactic categories such as noun phrase or verb phrase help to
constrain the probable words at each point within a sentence, and

• the phrase structure provides a framework for the meaning or
semantics of the sentence.

The probabilistic context-free grammar, or
PCFG.
• A probabilistic grammar assigns a probability to each string, and

“context-free” means that any rule can be used in any context:

• the rules for a noun phrase at the beginning of a sentence are the
same as for another noun phrase later in the sentence, and

• if the same phrase occurs in two locations, it must have the same
probability each time.

• We will define a PCFG grammar for a tiny fragment of English that is
suitable for communication between agents exploring the wumpus
world.

• We call this language E0, A grammar rule such as

The Wumpus World
• The grammar for En, with

example phrases for each rule.

• The syntactic categories are
sentence (S),

• noun phrase (NP),

• verb phrase (VP),

• list of adjectives (Adjs),

• prepositional phrase (PP) and

• relative clause (RelClause)

• the grammar overgenerates: that is, it generates sentences that are
not grammatical, such as “Me go I.”

• It also undergenerates: there are many sentences of English that it
rejects, such as “I think the wumpus is smelly.”

• We will see how to learn a better grammar later; for now we
concentrate on what we can do with this very simple grammar.

The lexicon of E0

• The lexicon, or list of
allowable words,

• Each of the lexical categories
ends in … to indicate that
there are other words in the
category.

• nouns, names, verbs,
adjectives, and adverbs, it is
infeasible even in principle
to list all the words.

Open Classes and Closed Classes

• The five categories (nouns, names, verbs, adjectives, and adverbs) are
called open classes.

• Pronouns, relative pronouns, articles, prepositions, and conjunctions
are called closed classes;

• they have a small number of words (a dozen or so), and change over
the course of centuries, not months.

• For example, “thee” and “thou” were commonly used pronouns in
the 17th century, were on the decline in the 19th century, and are
seen today only in poetry and some regional dialects

Parsing

• Parsing is the process of
analyzing a string of words to
uncover its phrase structure,
according to the rules of a
grammar.

• It is a search for a valid parse
tree whose leaves are the words
of the string.

• Parsing the string “The wumpus is dead” as a sentence, according to the
grammar E0

• Viewed as a topdown parse, we start with S, and on each step match one
nonterminal with a rule of the form (X Y ..) and replace X in the list of
items with Y…;

• for example replacing with the sequence NPVP.

• Viewed as a bottom-up parse, we start with the words “the wumpus is
dead”, and on each step match a string of tokens such as (Y…) against a rule
of the form (X Y ..) and replace the tokens with X; for example replacing
“the” with Article or Article Noun with NP.

• start with the S symbol and search top down, or we can start with the
words and search bottom up.

• Pure top-down or bottom-up parsing strategies can be inefficient,
however, because they can end up repeating effort in areas of the
search space that lead to dead ends.

• Consider the following two sentences:

• Have the students in section 2 of Computer Science 101 take the
exam.

• Have the students in section 2 of Computer Science 101 taken the
exam?

• Even though they share the first 10 words, these sentences have very
different parses, because the first is a command and the second is a
question.

• A left-to-right parsing algorithm would have to guess whether the first
word is part of a command or a question and will not be able to tell if
the guess is correct until at least the eleventh word, take or taken.

• If the algorithm guesses wrong, it will have to backtrack all the way to
the first word and reanalyze the whole sentence under the other
interpretation.

dynamic programming

• To avoid this source of inefficiency we can use dynamic programming:
every time we analyze a substring, store the results so we won’t have to
reanalyze it later.

• For example, once we discover that “the students in section 2 of Computer
Science 101” is an , we can record that result in a data structure known as a
chart.

• An algorithm that does this is called a chart parser.
• Because we are dealing with context-free grammars, any phrase that was

found in the context of one branch of the search tree can work just as well
in any other branch of the search tree.

• There are many types of chart parsers;
• A probabilistic version of a bottom-up chart parsing algorithm called the

CYK algorithm, after its inventors, Ali Cocke, Daniel Younger, and Tadeo
Kasami.

CYK algorithm

• It requires a grammar with all rules in one of two very specific
formats:

• lexical rules of the form X  word[p], and syntactic rules of the form
X  Y Z [p], with exactly two categories on the right-hand side.

• This grammar format, called Chomsky Normal Form, may seem
restrictive, but it is not: any context-free grammar can be
automatically transformed into Chomsky Normal Form

• The CYK algorithm for parsing. Given a sequence of words, it finds the most
probable parse tree for the sequence and its subsequences.

• The table gives the probability of the most probable tree of category
spanning The output table contains the most probable tree of category
spanning positions to inclusive. The function SUBSPANS returns all tuples
covering a span of with listing the tuples by increasing length of the span,
so that when we go to combine two shorter spans into a longer one, the
shorter spans are already in the table. LEXICALRULES(word) returns a
collection of pairs, one for each rule of the form and GRAMMARRULES
gives tuples, one for each grammar rule of the form Chomsky Normal Form
P [X, i, k] X wordsi:k. T[X, i, k] X i k (i, j, k) wordsi:k, i ≤ j < k, i : k (X, p) X →
word [p] , (X, Y , Z, p) X → Y Z [p] .

