15A05402:COMPUTER ORGANISATION

Integer Multipliers

S BABU AP/CSE KEC.

Basic Arithmetic and the ALU

- Earlier in the semester
 - Number representations, 2's complement, unsigned
 - Addition/Subtraction
 - Add/Sub ALU
 - Full adder, ripple carry, subtraction
 - Carry-lookahead addition
 - Logical operations
 - and, or, xor, nor, shifts
 - Overflow

Basic Arithmetic and the ALU

• Now

- Integer multiplication
 - Booth's algorithm
- This is not crucial for the project

Multiplication

- Flashback to 3rd grade
 - Multiplier
 - Multiplicand
 - Partial products
 - Final sum
- Base 10: 8 x 9 = 72
 - PP: 8 + 0 + 0 + 64 = 72
- How wide is the result?
 - $\log(n \times m) = \log(n) + \log(m)$
 - 32b x 32b = 64b result

			1	0	0	0
		X	1	0	0	1
			1	0	0	0
		0	0	0	0	
	0	0	0	0		
1	0	0	0			
1	0	0	1	0	0	0

Array Multiplier

 Adding all partial products simultaneously using an array of basic cells

 A_i, B_i

S_{in} C_{in} A_i B_j Full Adder

16-bit Array Multiplier

Conceptually straightforward Fairly expensive hardware, integer multiplies relatively rare Most used in array address calc: replace with shifts

Instead: Multicycle Multipliers

- Combinational multipliers
 - Very hardware-intensive
 - Integer multiply relatively rare
 - Not the right place to spend resources
- Multicycle multipliers
 - Iterate through bits of multiplier
 - Conditionally add shifted multiplicand

Multiplier Improvements

- Do we really need a 64-bit adder?
 - No, since low-order bits are not involved
 - Hence, just use a 32-bit adder
 - Shift product register right on every step
- Do we really need a separate multiplier register?
 - No, since low-order bits of 64-bit product are initially unused
 - Hence, just store multiplier there initially

Signed Multiplication

- Recall
 - For p = a x b, if a<0 or b<0, then p < 0
 - If a<0 and b<0, then p > 0
 - Hence sign(p) = sign(a) xor sign(b)
- Hence
 - Convert multiplier, multiplicand to positive number with (n-1) bits
 - Multiply positive numbers
 - Compute sign, convert product accordingly
- Or,
 - Perform sign-extension on shifts for prev. design
 - Right answer falls out

Booth's Encoding

- Recall grade school trick
 - When multiplying by 9:
 - Multiply by 10 (easy, just shift digits left)
 - Subtract once
 - E.g.
 - $123454 \times 9 = 123454 \times (10 1) = 1234540 123454$
 - Converts addition of six partial products to one shift and one subtraction
- Booth's algorithm applies same principle
 - Except no '9' in binary, just '1' and '0'
 - So, it's actually easier!

Booth's Encoding

- Search for a run of '1' bits in the multiplier
 - E.g. '0110' has a run of 2 '1' bits in the middle
 - Multiplying by '0110' (6 in decimal) is equivalent to multiplying by 8 and subtracting twice, since 6 x m = (8 2) x m = 8m 2m
- Hence, iterate right to left and:
 - Subtract multiplicand from product at first '1'
 - Add multiplicand to product after last '1'
 - Don't do either for '1' bits in the middle

Booth's Algorithm

Current bit	Bit to right	Explanation	Example	Operation	
1	0	Begins run of `1'	0000111 <mark>10</mark> 00	Subtract	
1	1	Middle of run of `1'	000011 <mark>11</mark> 000	Nothing	
0	1	End of a run of '1'	000 <mark>01</mark> 111000	Add	
0	0	Middle of a run of '0'	00001111000	Nothing	

Booth's Encoding

- Really just a new way to encode numbers
 - Normally positionally weighted as 2ⁿ
 - With Booth, each position has a sign bit
 - Can be extended to multiple bits

0	1	1	0	Binary
+1	0	-1	0	1-bit Booth
+2		-2		2-bit Booth

2-bits/cycle Booth Multiplier

- For every pair of multiplier bits
 - If Booth's encoding is '-2'
 - Shift multiplicand left by 1, then subtract
 - If Booth's encoding is '-1'
 - Subtract
 - If Booth's encoding is '0'
 - Do nothing
 - If Booth's encoding is '1'
 - Add
 - If Booth's encoding is '2'
 - Shift multiplicand left by 1, then add

2 bits/cycle Booth's

1 bit Bo	oth
00	+0
01	+M;
10	-M;
11	+0

Current	Previous	Operation	Explanation	
00	0	+0;shift 2	[00] => +0, [00] => +0; 2x(+0)+(+0)=+0	
00	1	+M; shift 2	[00] => +0, [01] => +M; 2x(+0)+(+M)=+N	1
01	0	+M; shift 2	[01] => +M, [10] => -M; 2x(+M)+(-M)=+M	
01	1	+2M; shift 2	[01] => +M, [11] => +0; 2x(+M)+(+0)=+2	M
10	0	-2M; shift 2	[10] => -M, [00] => +0; 2x(-M)+(+0)=-2M	
10	1	-M; shift 2	[10] => -M, [01] => +M; 2x(-M)+(+M)=-M	
11	0	-M; shift 2	[11] => +0, [10] => -M; 2x(+0)+(-M)=-M	
11	1	+0; shift 2	[11] => +0, [11] => +0; 2x(+0)+(+0)=+0	

Booth's Example

- Negative multiplicand:
 - -6 x 6 = -36

1010 x 0110, 0110 in Booth's encoding is +0-0

Hence:

1111 1010	x 0	0000 0000
1111 0100	x -1	0000 1100
1110 1000	x 0	0000 0000
1101 0000	x +1	1101 0000
	Final Sum:	1101 1100 (-36)

Booth's Example

- Negative multiplier:
 - -6 x -2 = 12

1010 x 1110, 1110 in Booth's encoding is 00-0

Hence:

1111 1010	x 0	0000 0000
1111 0100	x -1	0000 1100
1110 1000	x 0	0000 0000
1101 0000	x 0	0000 0000
	Final Sum:	0000 1100 (12)

Summary

- Integer multiply
 - Combinational
 - Multicycle
 - Booth's algorithm