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Basic Arithmetic and the ALU 

• Earlier in the semester 

• Number representations, 2’s complement, 
unsigned 

• Addition/Subtraction 

• Add/Sub ALU 

• Full adder, ripple carry, subtraction 

• Carry-lookahead addition 

• Logical operations 

• and, or, xor, nor, shifts 

• Overflow 

 



Basic Arithmetic and the ALU 

• Now 

• Integer multiplication 

• Booth’s algorithm 

• This is not crucial for the project 

 



Multiplication 

• Flashback to 3rd grade 
• Multiplier 

• Multiplicand 

• Partial products 

• Final sum 

• Base 10: 8 x 9 = 72 
• PP: 8 + 0 + 0 + 64 = 72 

• How wide is the result? 
• log(n x m) = log(n) + log(m) 

• 32b x 32b = 64b result 

1 0 0 0 

x 1 0 0 1 

1 0 0 0 

0 0 0 0 

0 0 0 0 

1 0 0 0 

1 0 0 1 0 0 0 



Array Multiplier 

• Adding all partial products 
simultaneously using an 
array of basic cells 

1 0 0 0 

x 1 0 0 1 

1 0 0 0 

0 0 0 0 

0 0 0 0 

1 0 0 0 

1 0 0 1 0 0 0 

Full Adder 

Sin   Cin   Ai   Bj 

Cout    Sout  

Ai ,Bj 

http://en.wikipedia.org/wiki/Image:AND_ANSI.svg


16-bit Array Multiplier 

Conceptually straightforward 

Fairly expensive hardware, integer multiplies relatively rare 

Most used in array address calc: replace with shifts 

[Source: J. Hayes, 

Univ. of Michigan] 



Instead: Multicycle Multipliers 

• Combinational multipliers 

• Very hardware-intensive 

• Integer multiply relatively rare 

• Not the right place to spend resources 

• Multicycle multipliers 

• Iterate through bits of multiplier 

• Conditionally add shifted multiplicand 



Multiplier 
1 0 0 0 

x 1 0 0 1 

1 0 0 0 

0 0 0 0 

0 0 0 0 

1 0 0 0 

1 0 0 1 0 0 0 



Multiplier 

Done

1. Test


Multiplier0

1a. Add multiplicand to product and


place the result in Product register

2. Shift the Multiplicand register left 1 bit

3. Shift the Multiplier register right 1 bit

32nd repetition?

Start

Multiplier0 = 0Multiplier0 = 1

No:  < 32 repetitions

Yes:  32 repetitions

1 0 0 0 

x 1 0 0 1 

1 0 0 0 

0 0 0 0 

0 0 0 0 

1 0 0 0 

1 0 0 1 0 0 0 



Multiplier Improvements 

• Do we really need a 64-bit adder? 
• No, since low-order bits are not involved 

• Hence, just use a 32-bit adder 
• Shift product register right on every step 

• Do we really need a separate multiplier register? 
• No, since low-order bits of 64-bit product are initially unused 

• Hence, just store multiplier there initially 



Multiplier 

Control


testWrite

32 bits

64 bits

Shift right
Product

Multiplicand

32-bit ALU

1 0 0 0 

x 1 0 0 1 

1 0 0 0 

0 0 0 0 

0 0 0 0 

1 0 0 0 

1 0 0 1 0 0 0 



Multiplier 

Done

1. Test


Product0

1a. Add multiplicand to the left half of


the product and place the result in


the left half of the Product register

2. Shift the Product register right 1 bit

32nd repetition?

Start

Product0 = 0Product0 = 1

No:  < 32 repetitions

Yes:  32 repetitions

1 0 0 0 

x 1 0 0 1 

1 0 0 0 

0 0 0 0 

0 0 0 0 

1 0 0 0 

1 0 0 1 0 0 0 



Signed Multiplication 

• Recall 
• For p = a x b, if a<0 or b<0, then p < 0 
• If a<0 and b<0, then p > 0 
• Hence sign(p) = sign(a) xor sign(b) 

• Hence 
• Convert multiplier, multiplicand to positive number with 

(n-1) bits 
• Multiply positive numbers 
• Compute sign, convert product accordingly 

• Or, 
• Perform sign-extension on shifts for prev. design 
• Right answer falls out 



Booth’s Encoding 

• Recall grade school trick 
• When multiplying by 9: 

• Multiply by 10 (easy, just shift digits left) 

• Subtract once 

• E.g. 
• 123454 x 9 = 123454 x (10 – 1) = 1234540 – 123454 

• Converts addition of six partial products to one shift and one 
subtraction 

• Booth’s algorithm applies same principle 
• Except no ‘9’ in binary, just ‘1’ and ‘0’ 

• So, it’s actually easier! 



Booth’s Encoding 

• Search for a run of ‘1’ bits in the multiplier 

• E.g. ‘0110’ has a run of 2 ‘1’ bits in the middle 

• Multiplying by ‘0110’ (6 in decimal) is equivalent to 
multiplying by 8 and subtracting twice, since 6 x m = (8 
– 2) x m = 8m – 2m 

• Hence, iterate right to left and: 

• Subtract multiplicand from product at first ‘1’ 

• Add multiplicand to product after last ‘1’ 

• Don’t do either for ‘1’ bits in the middle 



Booth’s Algorithm 

Current 
bit 

Bit to 
right 

Explanation Example Operation 

1 0 Begins run of ‘1’ 00001111000 Subtract 

1 1 Middle of run of ‘1’ 00001111000 Nothing 

0 1 End of a run of ‘1’ 00001111000 Add 

0 0 Middle of a run of ‘0’ 00001111000 Nothing 



Booth’s Encoding 

• Really just a new way to encode numbers 

• Normally positionally weighted as 2n 

• With Booth, each position has a sign bit 

• Can be extended to multiple bits 

0 1 1 0 Binary 

+1 0 -1 0 1-bit  Booth 

+2 -2 2-bit Booth 



2-bits/cycle Booth Multiplier 

• For every pair of multiplier bits 
• If Booth’s encoding is ‘-2’ 

• Shift multiplicand left by 1, then subtract 

• If Booth’s encoding is ‘-1’ 
• Subtract 

• If Booth’s encoding is ‘0’ 
• Do nothing 

• If Booth’s encoding is ‘1’ 
• Add 

• If Booth’s encoding is ‘2’ 
• Shift multiplicand left by 1, then add 



2 bits/cycle Booth’s 

Current Previous Operation Explanation 

00 0 +0;shift 2 [00] => +0, [00] => +0; 2x(+0)+(+0)=+0 

00 1 +M; shift 2 [00] => +0, [01] => +M; 2x(+0)+(+M)=+M 

01 0 +M; shift 2 [01] => +M, [10] => -M; 2x(+M)+(-M)=+M 

01 1 +2M; shift 2 [01] => +M, [11] => +0; 2x(+M)+(+0)=+2M 

10 0 -2M; shift 2 [10] => -M, [00] => +0; 2x(-M)+(+0)=-2M 

10 1 -M; shift 2 [10] => -M, [01] => +M; 2x(-M)+(+M)=-M 

11 0 -M; shift 2 [11] => +0, [10] => -M; 2x(+0)+(-M)=-M 

11 1 +0; shift 2 [11] => +0, [11] => +0; 2x(+0)+(+0)=+0 

1 bit  Booth 

00 +0 

01 +M; 

10 -M; 

11 +0 



Booth’s Example 

• Negative multiplicand:  

-6 x 6 = -36 

1010 x 0110, 0110 in Booth’s encoding is +0-0 

Hence: 

 

1111 1010 x 0 0000 0000 

1111 0100 x –1 0000 1100 

1110 1000 x 0 0000 0000 

1101 0000 x +1 1101 0000 

Final Sum: 1101 1100 (-36) 



Booth’s Example 

• Negative multiplier:  

-6 x -2 = 12 

1010 x 1110, 1110 in Booth’s encoding is 00-0 

Hence: 

 

1111 1010 x 0 0000 0000 

1111 0100 x –1 0000 1100 

1110 1000 x 0 0000 0000 

1101 0000 x 0 0000 0000 

Final Sum: 0000 1100 (12) 



Summary 

• Integer multiply 

• Combinational 

• Multicycle 

• Booth’s algorithm 


