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Integer Multipliers
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Basic Arithmetic and the ALU

Earlier in the semester

Number representations, 2’s complement,
unsigned

Addition/Subtraction
Add/Sub ALU
Full adder, ripple carry, subtraction
Carry-lookahead addition
Logical operations
and, or, xor, nor, shifts
Overflow




Basic Arithmetic and the ALU

* Now

Integer multiplication
Booth’s algorithm

* This is not crucial for the project




Multiplication

* Flashback to 3™ grade
* Multiplier
* Multiplicand
* Partial products
* Final sum
* Base 10: 8x9 =72
* PP:8+0+0+64=72
* How wide is the result?
* log(n x m) = log(n) + log(m)
* 32b x 32b = 64b result




Array Multiplier

* Adding all partial product
simultaneously using an
array of basic cells
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Half Adder
O Full Adder
Most used in array address calc: replace with shifts

16-bit Array Multiplier
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Fairly expensive hardware, integer multiplies relatively rare

Conceptually straightforward



Instead: Multicycle Multipliers

* Combinational multipliers
Very hardware-intensive
Integer multiply relatively rare
Not the right place to spend resources
* Multicycle multipliers
Iterate through bits of multiplier
Conditionally add shifted multiplicand
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Multiplier
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Multiplier Improvements

* Do we really need a 64-bit adder?
No, since low-order bits are not involved

Hence, just use a 32-bit adder
Shift product register right on every step

* Do we really need a separate multiplier register?
No, since low-order bits of 64-bit product are initially unused
Hence, just store multiplier there initially




Multiplier
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Signed Multiplication

* Recall
For p=axb, if a<0 or b<0, then p <0
If a<0 and b<0, thenp >0
Hence sign(p) = sign(a) xor sign(b)

* Hence

Convert multiplier, multiplicand to positive number with
(n-1) bits

Multiply positive numbers
Compute sign, convert product accordingly
* Or,
Perform sign-extension on shifts for prev. design
Right answer falls out




Booth's Encoding

* Recall grade school trick
When multiplying by 9:
Multiply by 10 (easy, just shift digits left)
Subtract once
E.g.
123454 x9 =123454 x (10 —-1) = 1234540 — 123454

Converts addition of six partial products to one shift and one
subtraction

* Booth’s algorithm applies same principle
Except no ‘9" in binary, just ‘1’ and ‘0’
So, it’s actually easier!




Booth's Encoding

* Search for a run of ‘1’ bits in the multiplier
E.g. ‘0110’ has a run of 2 ‘1’ bits in the middle
Multiplying by ‘0110’ (6 in decimal) is equivalent to
multiplying by 8 and subtracting twice, since 6 x m = (8
—2)xm=8m-2m

* Hence, iterate right to left and:
Subtract multiplicand from product at first ‘1’
Add multiplicand to product after last ‘1’
Don’t do either for ‘1’ bits in the middle




Booth's Algorithm

Current | Bit to | Explanation Example Operation
bit right

1 0 Begins run of ‘1’ 00001111000 | Subtract
1 1 Middle of run of '1° | 00001111000 | Nothing

0 1 End of a run of ‘1’ 00001111000 |Add

0 0 Middle of a run of ‘0" | 00001111000 | Nothing




Booth's Encoding

* Really just a new way to encode numbers
Normally positionally weighted as 2"
With Booth, each position has a sign bit
Can be extended to multiple bits

0O |1 |1 |0 |[Binary

+1 |0 [-1 |0 |1-bit Booth

+2 -2 2-bit Booth




2-bits/cycle Booth Multiplier

* For every pair of multiplier bits
If Booth’s encoding is -2’
Shift multiplicand left by 1, then subtract

If Booth’s encoding is -1’
Subtract

If Booth’s encoding is ‘0’
Do nothing

If Booth’s encoding is ‘1’
Add

If Booth’s encoding is ‘2’
Shift multiplicand left by 1, then add




2 bits/cycle Booth’s

Current | Previous | Operation Explanation
0010 +0;shift 2 [00] => +0, [00] => +0; 2x(+0)+(+0)=+0
0_0__1 +M; shift 2 | [00] => +0, [01] => +M; 2x(+0)+(+M)=+
0_1__0 +M; shift 2 | [01] => +M, [10] => -M; 2x(+M)+(-M)=+M
0_1__1 +2M; shift 2 | [01] => +M, [11] => +0; 2x(+M)+(+0)=+2
10]0 2M; shift 2 | [10] => -M, [00] => +0; 2x(-M)+(+0)=-2M
10]1 M: shift 2 | [10] => -M, [01] => +M; 2x(-M)+(+M)=-M
11]0 M: shift 2 | [11] => +0, [10] => -M; 2x(+0)+(-M)=-M
£=1 +0; shift 2 |[11] => +0, [11] => +0; 2x(+0)+(+0)=+0




Booth’s Example

* Negative multiplicand:
-6x6=-36
1010x 0110, 0110 in Booth’s encoding is +0-0
Hence:

1111 1010 X 0 0000 0000
1111 0100 X —1 0000 1100
1110 1000 x 0 0000 0000
1101 0000 X +1 1101 0000
Final Sum: 1101 1100 (-36




Booth’s Example

* Negative multiplier:
-6x-2=12
1010x 1110, 1110 in Booth’s encoding is 00-0
Hence:

1111 1010 x 0 0000 0000
1111 0100 X —1 0000 1100
1110 1000 x 0 0000 0000
1101 0000 x 0 0000 0000
Final Sum: 0000 1100 (12)




Summary

* Integer multiply
Combinational
Multicycle
Booth’s algorithm




