15A05402:COMPUTER ORGANISATION

Integer Multipliers

S BABU
AP/CSE
KEC.

Basic Arithmetic and the ALU

- Earlier in the semester
- Number representations, 2's complement, unsigned
- Addition/Subtraction
- Add/Sub ALU
- Full adder, ripple carry, subtraction
- Carry-lookahead addition
- Logical operations
- and, or, xor, nor, shifts
- Overflow

Basic Arithmetic and the ALU

- Now
- Integer multiplication
- Booth's algorithm
- This is not crucial for the project

Multiplication

- Flashback to $3^{\text {rd }}$ grade
- Multiplier
- Multiplicand
- Partial products
- Final sum
- Base 10: $8 \times 9=72$
- PP: $8+0+0+64=72$
- How wide is the result?
- $\log (n \times m)=\log (n)+\log (m)$
- $32 b \times 32 b=64 b$ result

Array Multiplier

- Adding all partial products simultaneously using an array of basic cells

16-bit Array Multiplier

Conceptually straightforward

Fairly expensive hardware, integer multiplies relatively rare Most used in array address calc: replace with shifts

Instead: Multicycle Multipliers

- Combinational multipliers
- Very hardware-intensive
- Integer multiply relatively rare
- Not the right place to spend resources
- Multicycle multipliers
- Iterate through bits of multiplier
- Conditionally add shifted multiplicand

Multiplier

$\left.\begin{array}{rrrrr} & 1 & 0 & 0 & 0 \\ & \times 1 & 0 & 0 & 1 \\ & 1 & 0 & 0 & 0 \\ & 0 & 0 & 0 & 0\end{array}\right]$
ultiplier Shift right
32 bits

64 bits

Multiplier

Multiplier Improvements

- Do we really need a 64 -bit adder?
- No, since low-order bits are not involved
- Hence, just use a 32-bit adder
- Shift product register right on every step
- Do we really need a separate multiplier register?
- No, since low-order bits of 64-bit product are initially unused
- Hence, just store multiplier there initially

Multiplier

Multiplier

a. Add multiplicand to the left half of the product and place the result in the left half of the Product register

```
100
x 1001
1000
000
    O 0 0
1000
1001000
```


Signed Multiplication

- Recall
- For $p=a \times b$, if $a<0$ or $b<0$, then $p<0$
- If $a<0$ and $b<0$, then $p>0$
- Hence $\operatorname{sign}(p)=\operatorname{sign}(a)$ xor $\operatorname{sign}(b)$
- Hence
- Convert multiplier, multiplicand to positive number with ($\mathrm{n}-1$) bits
- Multiply positive numbers
- Compute sign, convert product accordingly
- Or,
- Perform sign-extension on shifts for prev. design
- Right answer falls out

Booth's Encoding

- Recall grade school trick
- When multiplying by 9:
- Multiply by 10 (easy, just shift digits left)
- Subtract once
- E.g.
- $123454 \times 9=123454 \times(10-1)=1234540-123454$
- Converts addition of six partial products to one shift and one subtraction
- Booth's algorithm applies same principle
- Except no ' 9 ' in binary, just ' 1 ' and ' 0 '
- So, it's actually easier!

Booth's Encoding

- Search for a run of ' 1 ' bits in the multiplier
- E.g. '0110' has a run of 2 ' 1 ' bits in the middle
- Multiplying by ‘0110’ (6 in decimal) is equivalent to multiplying by 8 and subtracting twice, since $6 \times \mathrm{m}=(8$
-2) $x m=8 m-2 m$
- Hence, iterate right to left and:
- Subtract multiplicand from product at first ' 1 '
- Add multiplicand to product after last '1'
- Don't do either for ' 1 ' bits in the middle

Booth's Algorithm

Current bit	Bit to right	Explanation	Example	Operation
1	0	Begins run of '1'	00001111000	Subtract
1	1	Middle of run of '1' $^{\prime} 00001111000$	Nothing	
0	1	End of a run of '1'	00001111000	Add
0	0	Middle of a run of '0'	00001111000	Nothing

Booth's Encoding

- Really just a new way to encode numbers
- Normally positionally weighted as 2^{n}
- With Booth, each position has a sign bit
- Can be extended to multiple bits

0	1	1	0	Binary
+1	0	-1	0	1-bit Booth
+2		-2		2-bit Booth

2-bits/cycle Booth Multiplier

- For every pair of multiplier bits
- If Booth's encoding is ' -2 '
- Shift multiplicand left by 1 , then subtract
- If Booth's encoding is ' -1 '
- Subtract
- If Booth's encoding is ' 0 '
- Do nothing
- If Booth's encoding is ' 1 '
- Add
- If Booth's encoding is '2'
- Shift multiplicand left by 1 , then add

2 bits/cycle Booth's

1 bit Booth	
00	+0
01	$+M ;$
10	$-M ;$
11	+0

Current	Previous	Operation	Explanation
00	0	+0;shift 2	$[00]=>+0,[00]=>+0 ; 2 x(+0)+(+0)=+0$
00	1	+M; shift 2	$[00]=>+0,[01]=>+M ; 2 x(+0)+(+M)=+M$
01	0	+M; shift 2	$[01]=>+M,[10]=>-M ; 2 x(+M)+(-M)=+M$
01	1	+2M; shift 2	$[01]=>+M,[11]=>+0 ; 2 x(+M)+(+0)=+2 M$
10	0	-2M; shift 2	[10] => -M, [00] $=>+0 ; 2 x(-M)+(+0)=-2 M$
10	1	-M; shift 2	$[10]=>-M,[01]=>+M ; 2 x(-M)+(+M)=-M$
11	0	-M; shift 2	$[11]=>+0,[10]=>-M ; 2 x(+0)+(-M)=-M$
11	1	+0; shift 2	$[11]=>+0,[11]=>+0 ; 2 x(+0)+(+0)=+0$

Booth's Example

- Negative multiplicand:
$-6 \times 6=-36$
$1010 \times 0110,0110$ in Booth's encoding is $+0-0$
Hence:

11111010	$x 0$	00000000
11110100	$x-1$	00001100
11101000	$x 0$	00000000
11010000	$x+1$	11010000
	Final Sum:	$11011100(-36)$

Booth's Example

- Negative multiplier:
$-6 x-2=12$
$1010 \times 1110,1110$ in Booth's encoding is 00-0
Hence:

11111010	$x 0$	00000000
11110100	$x-1$	00001100
11101000	$x 0$	00000000
11010000	$x 0$	00000000
	Final Sum:	$00001100(12)$

Summary

- Integer multiply
- Combinational
- Multicycle
- Booth's algorithm

