

Integer Multipliers

S BABU

AP/CSE

KEC.

15A05402:COMPUTER ORGANISATION

Basic Arithmetic and the ALU

• Earlier in the semester

• Number representations, 2’s complement,
unsigned

• Addition/Subtraction

• Add/Sub ALU

• Full adder, ripple carry, subtraction

• Carry-lookahead addition

• Logical operations

• and, or, xor, nor, shifts

• Overflow

Basic Arithmetic and the ALU

• Now

• Integer multiplication

• Booth’s algorithm

• This is not crucial for the project

Multiplication

• Flashback to 3rd grade
• Multiplier

• Multiplicand

• Partial products

• Final sum

• Base 10: 8 x 9 = 72
• PP: 8 + 0 + 0 + 64 = 72

• How wide is the result?
• log(n x m) = log(n) + log(m)

• 32b x 32b = 64b result

1 0 0 0

x 1 0 0 1

1 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

1 0 0 1 0 0 0

Array Multiplier

• Adding all partial products
simultaneously using an
array of basic cells

1 0 0 0

x 1 0 0 1

1 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

1 0 0 1 0 0 0

Full Adder

Sin Cin Ai Bj

Cout Sout

Ai ,Bj

http://en.wikipedia.org/wiki/Image:AND_ANSI.svg

16-bit Array Multiplier

Conceptually straightforward

Fairly expensive hardware, integer multiplies relatively rare

Most used in array address calc: replace with shifts

[Source: J. Hayes,

Univ. of Michigan]

Instead: Multicycle Multipliers

• Combinational multipliers

• Very hardware-intensive

• Integer multiply relatively rare

• Not the right place to spend resources

• Multicycle multipliers

• Iterate through bits of multiplier

• Conditionally add shifted multiplicand

Multiplier
1 0 0 0

x 1 0 0 1

1 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

1 0 0 1 0 0 0

Multiplier

Done

1. Test

Multiplier0

1a. Add multiplicand to product and

place the result in Product register

2. Shift the Multiplicand register left 1 bit

3. Shift the Multiplier register right 1 bit

32nd repetition?

Start

Multiplier0 = 0Multiplier0 = 1

No: < 32 repetitions

Yes: 32 repetitions

1 0 0 0

x 1 0 0 1

1 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

1 0 0 1 0 0 0

Multiplier Improvements

• Do we really need a 64-bit adder?
• No, since low-order bits are not involved

• Hence, just use a 32-bit adder
• Shift product register right on every step

• Do we really need a separate multiplier register?
• No, since low-order bits of 64-bit product are initially unused

• Hence, just store multiplier there initially

Multiplier

Control

testWrite

32 bits

64 bits

Shift right
Product

Multiplicand

32-bit ALU

1 0 0 0

x 1 0 0 1

1 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

1 0 0 1 0 0 0

Multiplier

Done

1. Test

Product0

1a. Add multiplicand to the left half of

the product and place the result in

the left half of the Product register

2. Shift the Product register right 1 bit

32nd repetition?

Start

Product0 = 0Product0 = 1

No: < 32 repetitions

Yes: 32 repetitions

1 0 0 0

x 1 0 0 1

1 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

1 0 0 1 0 0 0

Signed Multiplication

• Recall
• For p = a x b, if a<0 or b<0, then p < 0
• If a<0 and b<0, then p > 0
• Hence sign(p) = sign(a) xor sign(b)

• Hence
• Convert multiplier, multiplicand to positive number with

(n-1) bits
• Multiply positive numbers
• Compute sign, convert product accordingly

• Or,
• Perform sign-extension on shifts for prev. design
• Right answer falls out

Booth’s Encoding

• Recall grade school trick
• When multiplying by 9:

• Multiply by 10 (easy, just shift digits left)

• Subtract once

• E.g.
• 123454 x 9 = 123454 x (10 – 1) = 1234540 – 123454

• Converts addition of six partial products to one shift and one
subtraction

• Booth’s algorithm applies same principle
• Except no ‘9’ in binary, just ‘1’ and ‘0’

• So, it’s actually easier!

Booth’s Encoding

• Search for a run of ‘1’ bits in the multiplier

• E.g. ‘0110’ has a run of 2 ‘1’ bits in the middle

• Multiplying by ‘0110’ (6 in decimal) is equivalent to
multiplying by 8 and subtracting twice, since 6 x m = (8
– 2) x m = 8m – 2m

• Hence, iterate right to left and:

• Subtract multiplicand from product at first ‘1’

• Add multiplicand to product after last ‘1’

• Don’t do either for ‘1’ bits in the middle

Booth’s Algorithm

Current
bit

Bit to
right

Explanation Example Operation

1 0 Begins run of ‘1’ 00001111000 Subtract

1 1 Middle of run of ‘1’ 00001111000 Nothing

0 1 End of a run of ‘1’ 00001111000 Add

0 0 Middle of a run of ‘0’ 00001111000 Nothing

Booth’s Encoding

• Really just a new way to encode numbers

• Normally positionally weighted as 2n

• With Booth, each position has a sign bit

• Can be extended to multiple bits

0 1 1 0 Binary

+1 0 -1 0 1-bit Booth

+2 -2 2-bit Booth

2-bits/cycle Booth Multiplier

• For every pair of multiplier bits
• If Booth’s encoding is ‘-2’

• Shift multiplicand left by 1, then subtract

• If Booth’s encoding is ‘-1’
• Subtract

• If Booth’s encoding is ‘0’
• Do nothing

• If Booth’s encoding is ‘1’
• Add

• If Booth’s encoding is ‘2’
• Shift multiplicand left by 1, then add

2 bits/cycle Booth’s

Current Previous Operation Explanation

00 0 +0;shift 2 [00] => +0, [00] => +0; 2x(+0)+(+0)=+0

00 1 +M; shift 2 [00] => +0, [01] => +M; 2x(+0)+(+M)=+M

01 0 +M; shift 2 [01] => +M, [10] => -M; 2x(+M)+(-M)=+M

01 1 +2M; shift 2 [01] => +M, [11] => +0; 2x(+M)+(+0)=+2M

10 0 -2M; shift 2 [10] => -M, [00] => +0; 2x(-M)+(+0)=-2M

10 1 -M; shift 2 [10] => -M, [01] => +M; 2x(-M)+(+M)=-M

11 0 -M; shift 2 [11] => +0, [10] => -M; 2x(+0)+(-M)=-M

11 1 +0; shift 2 [11] => +0, [11] => +0; 2x(+0)+(+0)=+0

1 bit Booth

00 +0

01 +M;

10 -M;

11 +0

Booth’s Example

• Negative multiplicand:

-6 x 6 = -36

1010 x 0110, 0110 in Booth’s encoding is +0-0

Hence:

1111 1010 x 0 0000 0000

1111 0100 x –1 0000 1100

1110 1000 x 0 0000 0000

1101 0000 x +1 1101 0000

Final Sum: 1101 1100 (-36)

Booth’s Example

• Negative multiplier:

-6 x -2 = 12

1010 x 1110, 1110 in Booth’s encoding is 00-0

Hence:

1111 1010 x 0 0000 0000

1111 0100 x –1 0000 1100

1110 1000 x 0 0000 0000

1101 0000 x 0 0000 0000

Final Sum: 0000 1100 (12)

Summary

• Integer multiply

• Combinational

• Multicycle

• Booth’s algorithm

