Linear Bounded Automata LBAs

Linear Bounded Automata (LBAs)

 are the same as Turing Machines with one difference:The input string tape space is the only tape space allowed to use

Linear Bounded Automaton (LBA)

Input string

Left-end Working space marker

Right-end marker

We define LBA's as NonDeterministic

Open Problem:

NonDeterministic LBA's
have same power with
Deterministic LBA's?

Example languages accepted by LBAs:

$$
\begin{aligned}
& L=\left\{a^{n} b^{n} c^{n}\right\} \\
& L=\left\{a^{n!}\right\}
\end{aligned}
$$

Conclusion:
LBA's have more power than NPDA's

Later in class we will prove:

LBA's have less power
than Turing Machines

A Universal Turing Machine

A limitation of Turing Machines:

Turing Machines are "hardwired"

$$
\begin{aligned}
& \text { they execute } \\
& \text { only one program }
\end{aligned}
$$

Real Computers are re-programmable

Solution: Universal Turing Machine

Attributes:

- Reprogrammable machine
- Simulates any other Turing Machine

Universal Turing Machine
simulates any other Turing Machine M

Input of Universal Turing Machine:
Description of transitions of M
Initial tape contents of M

Three tapes
Tape 1

Tape 1

 Description of M

We describe Turing machine M as a string of symbols:

We encode M as a string of symbols

Alphabet Encoding

Symbols:
a

1
c
d \downarrow
1111

State Encoding

States:

q_{2}
q_{3}
q_{4}
1
11

111
1111

Head Move Encoding
Move:
L
R
\downarrow
1
11

Transition Encoding

Transition: $\delta\left(q_{1}, a\right)=\left(q_{2}, b, L\right)$
 Encoding: 10101101101

separator

Machine Encoding

Transitions:

$\delta\left(q_{1}, a\right)=\left(q_{2}, b, L\right)$
Encoding: 10101101101001101101110111011
separator

Tape 1 contents of Universal Turing Machine:
encoding of the simulated machine M as a binary string of 0's and 1's

A Turing Machine is described with a binary string of O's and 1's

Therefore:

The set of Turing machines forms a language:
each string of the language is
the binary encoding of a Turing Machine

Language of Turing Machines

$$
L=\{010100101, \quad \text { (Turing Machine } 1)
$$

00100100101111, (Turing Machine 2)

111010011110010101,
...... $\}$

Countable Sets

Infinite sets are either:

Countable
or

Uncountable

Countable set:

There is a one to one correspondence between elements of the set and positive integers

Example:
The set of even integers is countable

Even integers:

Correspondence:

Positive integers: $\quad 1,2,3,4, \ldots$
$2 n$ corresponds to $n+1$

Example:
The set of rational numbers is countable

Rational numbers: $\frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \ldots$

Naïve Proof

$\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \ldots$
 Correspondence:
 $$
\downarrow \downarrow \downarrow
$$
 Positive integers:
 $1,2,3, \ldots$

Doesn'† work:

$$
\begin{aligned}
& \text { we will never count } \\
& \text { numbers with nominator } 2 \text { : }
\end{aligned} \quad \frac{2}{1}, \frac{2}{2}, \frac{2}{3}, \ldots
$$

Better Approach

$$
\begin{array}{llll}
\frac{1}{1} & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\
\frac{2}{1} & \frac{2}{2} & \frac{2}{3} & \\
\frac{3}{1} & \frac{3}{2} & & \\
\frac{4}{1} & & &
\end{array}
$$

Rational Numbers:

Correspondence:

Positive Integers:
 $1,2,3,4,5, \ldots$

We proved:
the set of rational numbers is countable by describing an enumeration procedure

Definition

Let S be a set of strings

An enumeration procedure for S is a Turing Machine that generates all strings of S one by one and

Each string is generated in finite time
strings $s_{1}, s_{2}, s_{3}, \ldots \in S$

Enumeration Machine for S
$\xrightarrow[\text { (on tape) }]{\text { output }} s_{1}, s_{2}, s_{3}, \ldots$

Finite time: $t_{1}, t_{2}, t_{3}, \ldots$

Enumeration Machine

Configuration

Time 0

$$
q_{0}
$$

Time t_{1}

$$
q_{s}
$$

Time t_{2}

q_{s}

Time t_{3}

q_{s}

Observation:

A set is countable if there is an enumeration procedure for it

Example:

The set of all strings $\{a, b, c\}^{+}$ is countable

Proof:
We will describe the enumeration procedure

Naive procedure:
Produce the strings in lexicographic order: a $a a$ $a a a$
aaaa

Doesn'† work:
strings starting with b
will never be produced

Better procedure: Proper Order

1. Produce all strings of length 1
2. Produce all strings of length 2
3. Produce all strings of length 3
4. Produce all strings of length 4

Theorem: The set of all Turing Machines is countable

Proof: Any Turing Machine can be encoded with a binary string of O's and 1's

Find an enumeration procedure for the set of Turing Machine strings

Enumeration Procedure:

Repeat

1. Generate the next binary string of O's and 1's in proper order
2. Check if the string describes a TuringyAgchine

Uncountable Sets

Definition: A set is uncountable if it is not countable

Theorem:

Let S be an infinite countable set

The powerset 2^{S} of S is uncountable

Proof:

Since S is countable, we can write

$$
S=\left\{s_{1}, s_{2}, s_{3}, \ldots\right\}
$$

Elements of S

Elements of the powerset have the form:

$$
\left\{s_{1}, s_{3}\right\}
$$

$$
\left\{s_{5}, s_{7}, s_{9}, s_{10}\right\}
$$

We encode each element of the power set with a binary string of O's and 1's

Powerset element
$\left\{s_{1}\right\}$
$\left\{s_{2}, s_{3}\right\}$
$\left\{s_{1}, s_{3}, s_{4}\right\}$
Encoding
$s_{1} \quad s_{2} \quad s_{3} \quad s_{4}$
1000
$\begin{array}{llll}0 & 1 & 1 & 0\end{array}$
$\begin{array}{llll}1 & 0 & 1 & 1\end{array}$

Let's assume (for contradiction) that the powerset is countable.

Then:
we can enumerate
the elements of the powerset

Powerset element

Encoding

$$
\begin{array}{lllllll}
t_{1} & & 1 & 0 & 0 & 0 & 0 \\
& & & & & \\
t_{2} & & 1 & 1 & 0 & 0 & 0 \\
t_{3} & & 1 & 1 & 0 & 1 & 0 \\
& & & & & & \\
t_{4} & & 1 & 1 & 0 & 0 & 1
\end{array}
$$

Take the powerset element whose bits are the complements in the diagonal

New element: 0011...
(birary complement of diagonal)

The new element must be some t_{i} of the powerset

However, that's impossible:
from definition of t_{i}
the i-th bit of t_{i} must be the complement of itself

Contradiction!!!

Since we have a contradiction:

The powerset 2^{S} of S is uncountable

An Application: Languages

Example Alphabet : $\{a, b\}$
The set of all Strings:
$S=\{a, b\}^{*}=\{\lambda, a, b, a a, a b, b a, b b, a a a, a a b, \ldots\}$ infinite and countable

Example Alphabet : $\{a, b\}$
The set of all Strings:

$$
S=\{a, b\}^{*}=\{\lambda, a, b, a a, a b, b a, b b, a a a, a a b, \ldots\}
$$

A language is a subset of S :

$$
L=\{a a, a b, a a b\}
$$

Example Alphabet : $\{a, b\}$
The set of all Strings:

$$
S=\{a, b\}^{*}=\{\lambda, a, b, a a, a b, b a, b b, a a a, a a b, \ldots\}
$$

The powerset of S contains all languages:

$$
\begin{aligned}
& 2^{S}=\{\{\lambda\},\{a\},\{a, b\}\{a a, a b, a a b\}, \ldots\} \\
& \begin{array}{lllll}
L_{1} & L_{2} & L_{3} & L_{4}
\end{array} \\
& \text { uncountable }
\end{aligned}
$$

Languages: uncountable

\section*{$\begin{array}{ccc}L_{1} & L_{2} & L_{3} \\ \downarrow & \downarrow & \downarrow\end{array}$
 $M_{1} \quad M_{2} \quad M_{3}$
 L_{k}

\downarrow
 ?
 Turing machines: countable}

There are infinitely many more languages than Turing Machines

Conclusion:

There are some languages not accepted by Turing Machines

These languages cannot be described by algorithms

