Numerical control

HISTORICAL DEVELOPMENT

- 15th century machining metal.
- 18th century industrialization, production-type machine tools.
- 20th century F.W. Taylor Tool metal HSS

Automated production equipment -

Screw machines

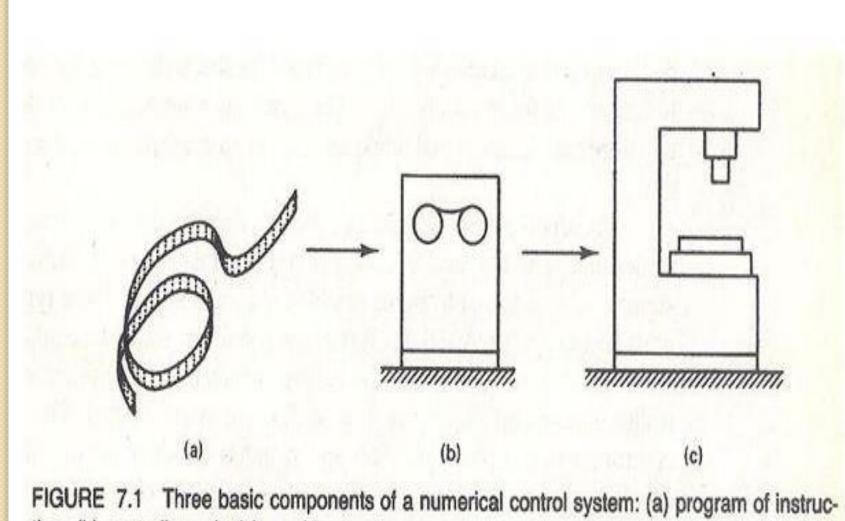
Transfer lines

Assembly lines

using cams and preset stops

Programmable automation -

NC PLC Robots



A Definition of NC

- Numerical Control is a system in which actions are controlled by the direct insertion of numerical data at some point.
- In other words, Programmable automation in which the mechanical actions of a 'machine tool' are controlled by a program

or

 It is defined Method of programmable automation in which various functions of machine tools are controlled by numbers , letters and symbols.

tion; (b) controller unit; (c) machine tool.

NUMERICAL CONTROL ELEMENTS

1.Program of instructions.

- 2.Machine control unit (MCU).
- 3.NC machine tool.
- 4.NC Cutting tools.

1.Program of Instructions:

- 1. The program of instructions is the detailed step by step of operations which are implemented by MCU.
- 2.The program is coded in alphanumerical form on an input medium to the MCU
- 3. The input medium is a punched tape or a magnetic tape .
- 4.Two method are used to program for NC
 - I. Manual part programming
 - II. Computer aided part programming

2. Machine Control Unit (MCU)

- NC machine tool has a main unit, which is known as Machine Control Unit.
- It consists of some electronic hardware that reads theNC programme, interprets it and conversely translates it for mechanical actions of the machine tool.
- MCU consists of two parts : Data processing unit (DPU) and
- control loops unit (CLU).
- <u>Function of DPU</u>: read the decode the instructions available on the tape & to provide the decoded data to the control loops unit (CLU).
- <u>Function of (CLU)</u>: To control the drives attached to the axes and receive the feedback signals from machine tool
- CLU also prompts a signal that the previous data segment is completed and that the DPU can read the next block of the part program.

3 .NC Machine Tool :

•Machine tool is the main components of a numerical control system, which executes the operations.

•It may consist of worktable, cutting tools, jigs and fixtures, motors for driving spindle and coolant and lubricating system.

•The latest development in the numerical control machine tool is the versatile machining center.

•This is a single machine capable of doing a number of operations such as milling, boring, drilling, reaming, and tapping by Automatic Tool Changer (ATC) under the control of tool selection instruction.

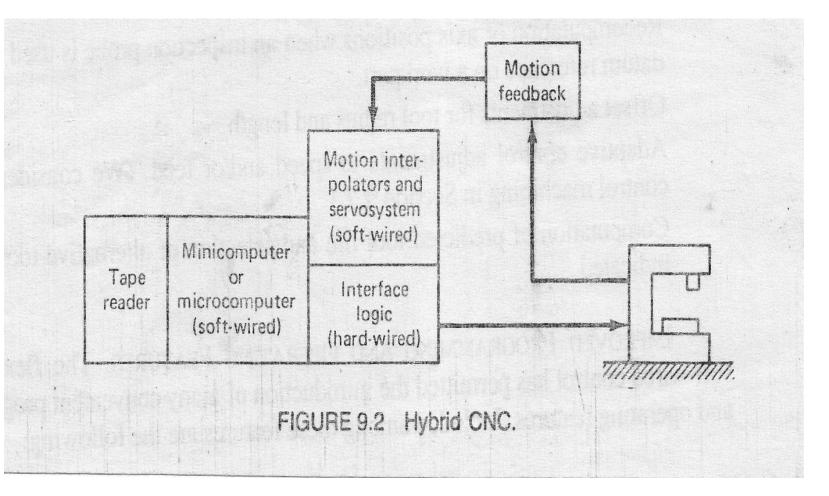
Problems with Conventional NC

- Part programming mistakes
- Nonoptimal speeds and feeds
- > Punched tape
- > Tape reader
- Controller
- Management information

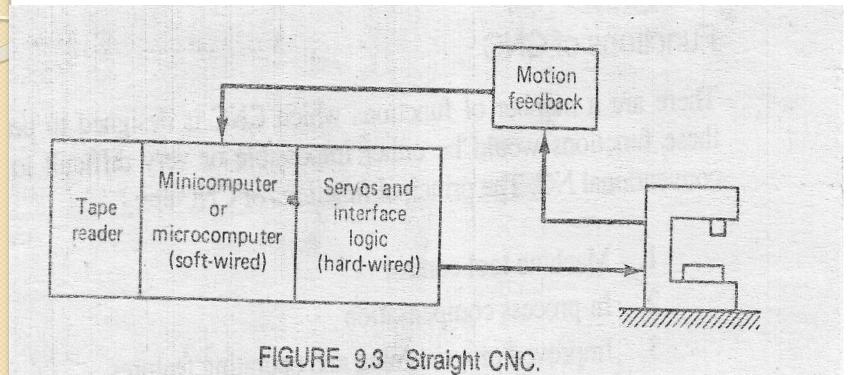
Computer Numerical Control

- Conventional hard-wired NC controller unit replaced by computer.
- NC system that utilizes stored programs in a dedicated computer to perform some or all NC functions
- Soft-wired
- Flexibility

Tape reader for initial program entry	Minicomputer or microcomputer (software functions and NC part program storage)	Computer- hardware interface and servosystem	
---	--	--	--


FIGURE 9.1 General configuration of computer numerical control (CNC) system.

1. 1. 1. 1. 1. 1.


1.Machine tool control

- Hybrid CNC –Hard-wired logic circuits for functions like feed rate generation, circular interpolation etc. in addition to computer Mass production of circuits and less expensive computer
 - Straight CNC –Computer to perform all NC functions

Hybrid CNC

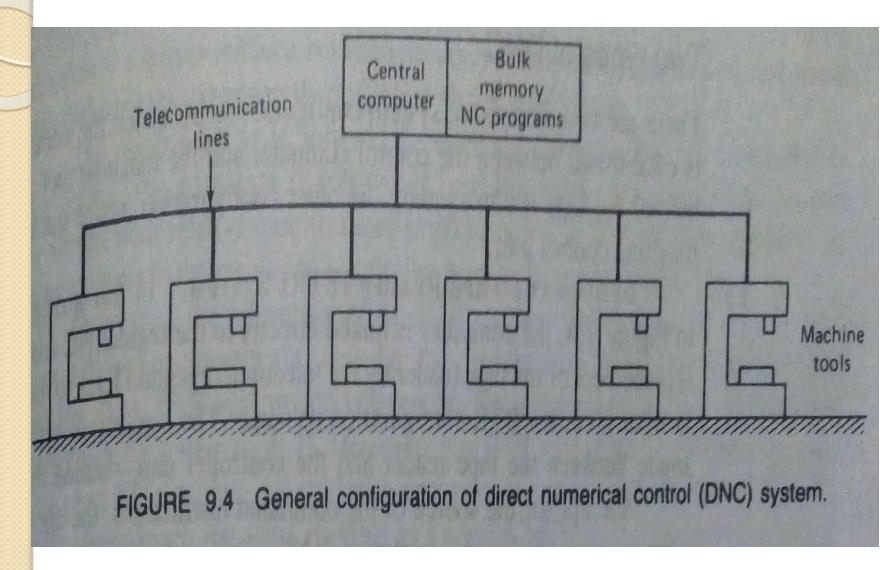
2.In-process compensation–Dynamic correction of machine tool motion for changes or errors that occur during processing

- > Adjustment of errors sensed by in-process inspection probes and gauges
- Recomputation of axis positions when an inspection probe is used to locate a datum reference on the work part
- > Offset adjustments for tool radius and length
- Adaptive control adjustments to sped and feed
- Computation of predicted tool life and selection of alternate tooling when indicated.

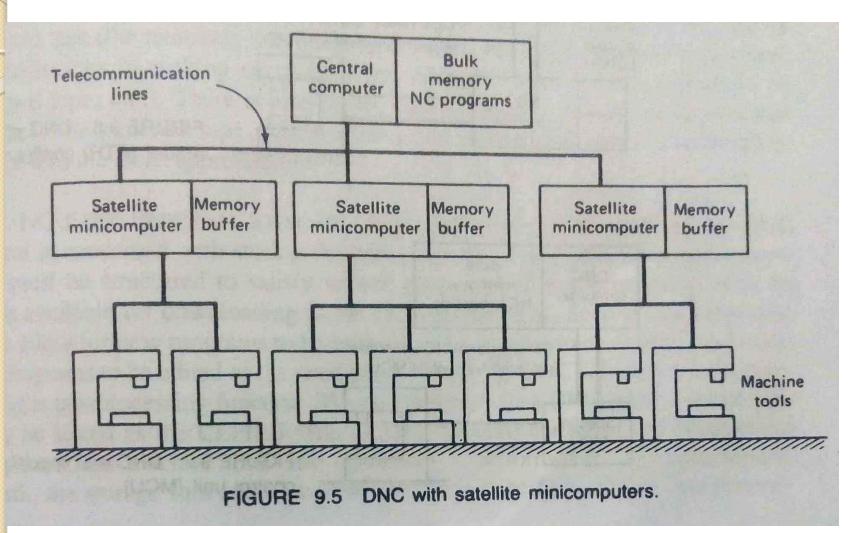
3. Improved programming and operating features

- > Use of tape and tape reader only once
- > On-line editing of part programs at the machine
- > Special canned cycles.
- > Graphic display of tool path to verify the tape
- > Various types of interpolation: circular, parabolic, cubic
- > Support of various units. Conversion from one unit to another unit.
- > Use of specially written subroutines or macros
- Manual data input (MDI)
- Several part programs in bulk can be stored

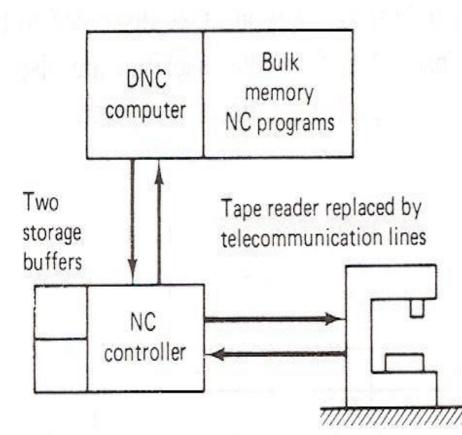
4.Diagnostics-Equipped with diagnostic capability to assist in maintaining and repairing the system
> Identification of reason for downtime


- > Indication of imminent failure of certain component
- > Redundancy of components

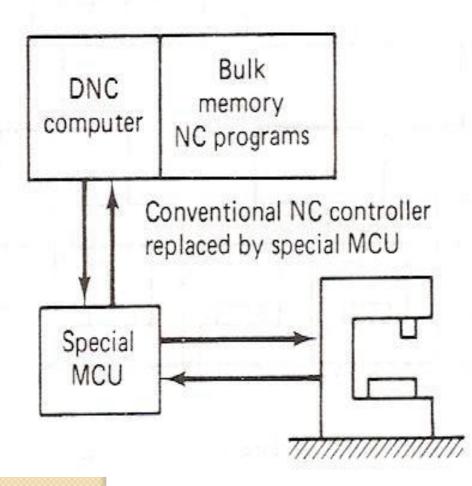
Direct Numerical Control (DNC)


A manufacturing system in which no. of machines are controlled by a computer through direct connection and in real time.

Direct Numerical Control (DNC)



DNC with satellite computer



Behind the Tape Reader (BTR)

- Computer is linked directly to regular NC controller unit
- The connection is made behind the tape reader
- Two temporary storage buffers
- Less cost

Special Machine Control Unit

Regular NC controller is replaced by special MCU

More accuracy in circular interpolation and fast material removal rates than BTR systems

Most CNC machines are sold with computer

NC, CNC and DNC

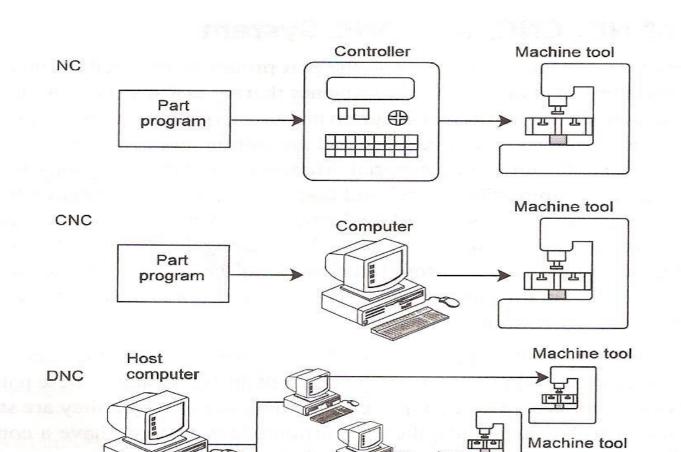


Figure 1.7: NC, CNC, and DNC Systems

Machine tool

1.NC without punched tape 2.NC part program storage

- Programs must be made available for downloading to CNC machine tools
- Part program can be uploaded after editing from CNC machine
- Entry of new programs. Editing of programs , deletion of programs
- Tool management
- Tool offsets can be downloaded in to MCU
- Postprocessor
- Data processing and management functions

3.Data collection, Processing and reporting

Monitor production in the factory
 Data processing and report generation by DNC computer

- Getting the data about health of the machine in the form of sensor signals or diagnostic messages which can be used for preventive/predictive maintenance
- Metrological data in the form of dimensional acceptance

4.Communications

- Central computer and machine tools
- Central computer and NC part programmer terminals
- Central computer and bulk memory, which stores the NC programs
- CAD system
- Shop floor control system
- Corporate data processing
- Remote maintenance diagnostics system

Adaptive Control

- A control system that measures certain output process variables like spindle deflection, force, torque, cutting temperature, vibration amplitude, horse power and uses them to control speed or feed
- NC reduces non productive time in a machining operation
- AC determines proper speeds and feeds during machining as a function of variation in work piece hardness, width or depth of cut, air gaps in part geometry etc.
- Increased metal removal rate and reduced cost per volume of metal removed

alloys

Where to use adaptive control?

- In-process time consumes significant portion of the machining cycle time. (>40%)
- Significant sources of variability in the job
- >Higher cost of operation of machine tool
- >Work material –steel, titanium, high strength alloys

Sources of variability in machining

- 1.Variable depth/width of cut
- 2.Variable workpiece hardness and variable machinability
- 3. Variable workpiece rigidity
- 4.Toolwear
- 5. Air gaps during cutting

Adaptive Control Optimization (ACO)

- Index of performance is a measure of overall process performance such as production rate or cost per volume of metal removed.
- Objective is to optimize the index of performance by manipulating speed or feed in the operation
- IP = MRR/TWR
- MRR Material removal rate
- TWR –Tool wear rate
- Sensors for measuring IP not available

Adaptive control Constraint (ACC)

• Less sophisticated and less expensive than research ACO systems

• Objective is to manipulate speed or feed so that measured process variables are maintained at or below their constraint limit values.

Operation of ACC system

- > Profile or contour milling on NC machine tool
- Feed is controlled variable
- Cutter force and horsepower are used as measured variables

• Hardware components

1.Sensors mounted on the spindle to measure cutter force2.Sensors to measure spindle motor current3.Control unit and display panel to operate the system4.Interface hardware to connect the AC system toexisting NC/CNC system

Relationship of AC software to APT program

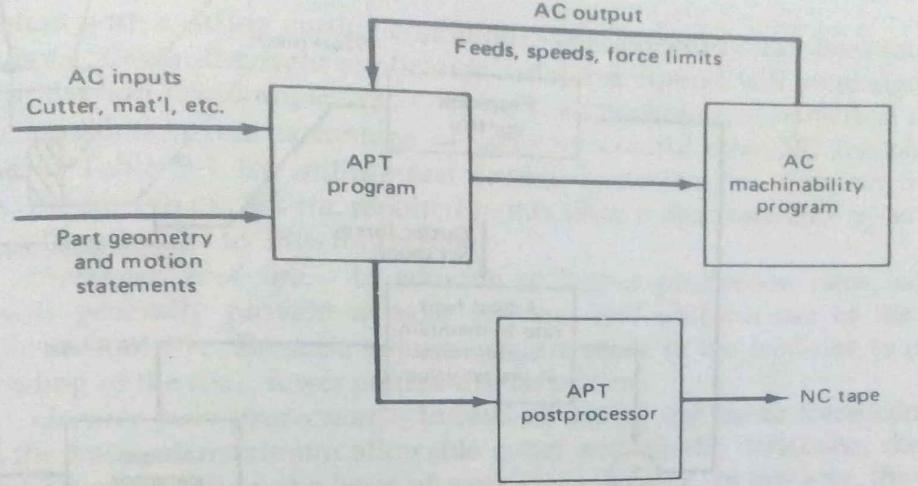


FIGURE 9.8 Relationship of adaptive control (AC) software to APT program.

Operation of ACC system during machining process

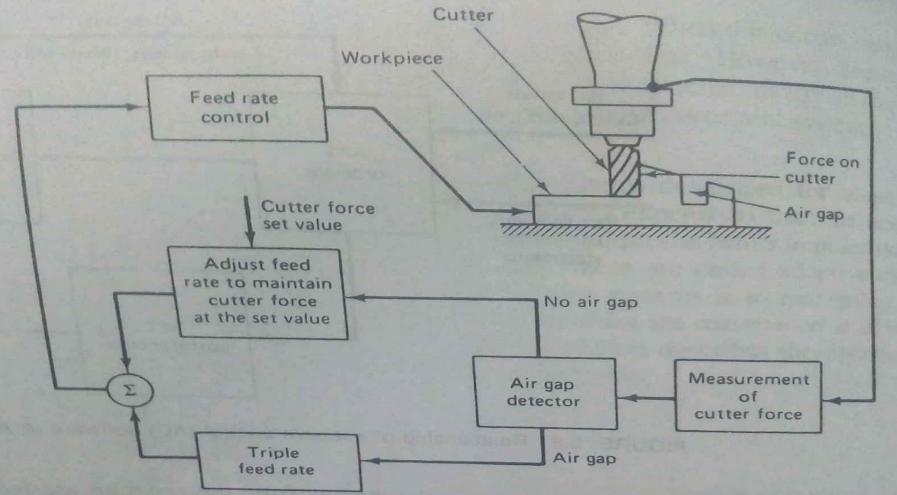
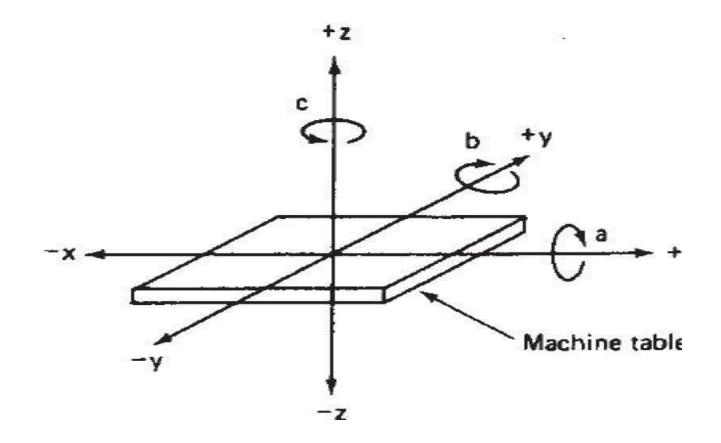
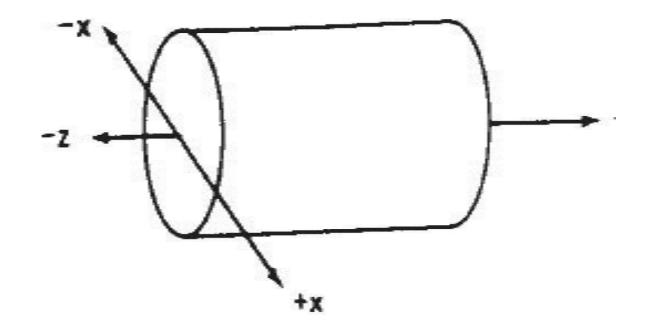
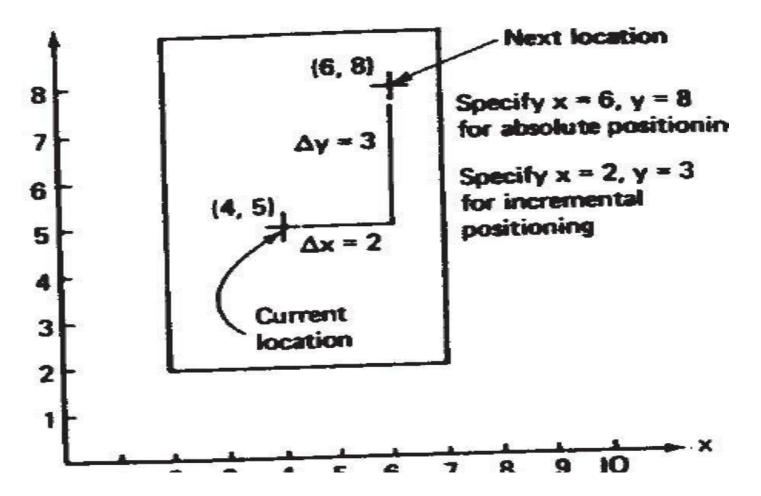



FIGURE 9.9 Configuration of typical adaptive control machining system that uses cutter forces as the measured process variable.


Benefits of AC

Increased production rate
 Increased tool life
 Greater part protection
 Increases machine life
 Less operator intervention
 Easier part programming

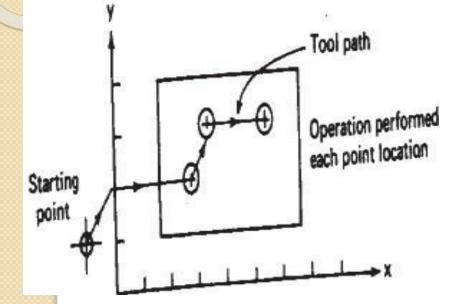
NC COORDINATE SYSTEMS

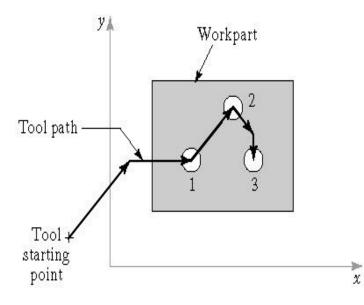


NC machine tool axis system for milling and drilling operations.

NC machine tool axis system for turning operation.

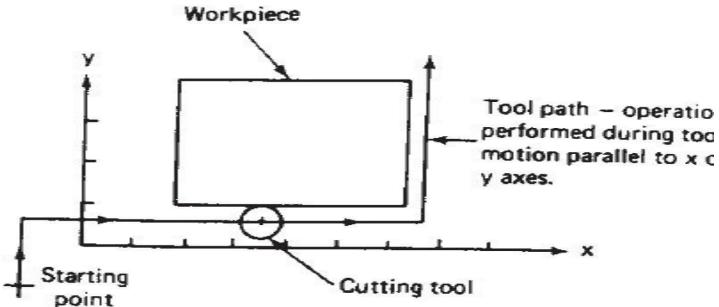
Absolute versus incremental positioning.

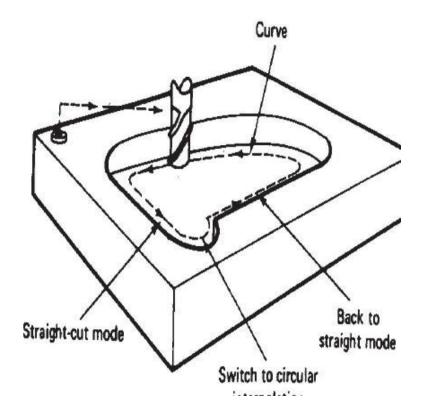

Fixed zero and floating zero

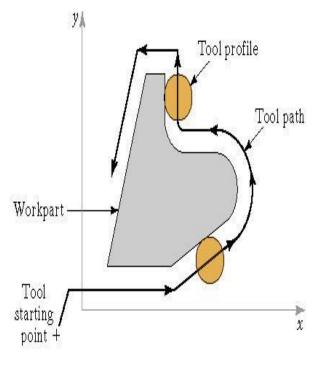

- The programmer must determine the position of the tool relative to the origin (zero point) of the coordinate system. NC machines have either of two methods for specifying the zero point. The first possibility is for the machine to have a fixed zero.
- The second and more common feature on modern NC machines allows the machine operator to set the zero point at any position on the machine table. This feature is called floating zero.

NC MOTION CONTROL SYSTEMS

- 1. Point-to-point
- 2. Straight cut
- 3. Contouring


Point-to-point (positioning) NC system.





Straight-cut system.

Contouring (continuous path) NC system for two-dimensional operations

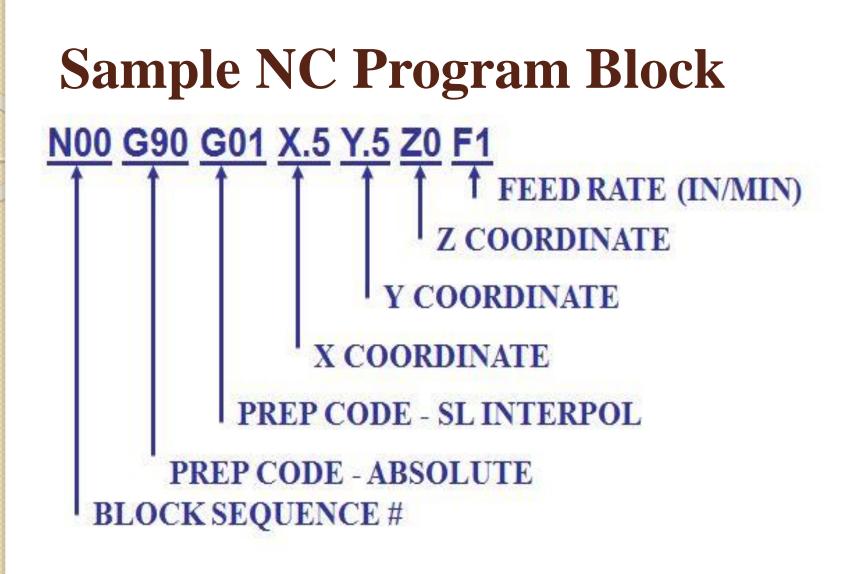
CNC Machining Centers

- Industrial surveys in 1960's showed smaller machine components requiring several operations tool long time to complete
 - Part sent to several machines before finished
 - There was much "operator intervention" during machining process
- In late 1960s and early 70s, begin to design machine that would perform several operations and do 90% of machining on one machine

Types of Machining Centers

- Three types: horizontal, vertical and universal **Factors to determine type and size**
- 1. Size and weight of largest piece machined
- 2. Maximum travel of three primary axes
- 3. Maximum speeds and feeds available
- 4. Horsepower of spindle
- Number of tools automatic tool changer can hold

Two Types of Horizontal Machining Centers


- Traveling-column
 - One or usually two tables where work mounted
 - Column and cutter move toward work on one table while operator changes work piece on other table
- Fixed-column
 - Equipped with pallet (removable table)
 - After work piece machined, pallet and work piece moved off receiver onto shuttle; shuttle rotated, bringing new pallet into position for shuttle and finished work pallet into position for unloading

Vertical Machining Center

- Saddle-type construction with sliding bed ways that use a sliding vertical head instead of quill movement
- Generally used to machine flat parts held in vise or simple fixture
- Versatility increased by addition of rotary accessories

Universal Machining Center

- Combines features of vertical and horizontal machining centers
 - Spindle can be programmed in both vertical and horizontal positions
 - Allows for machining all side of a part in one setup
- Useful for small and medium batch parts
- Has additional accessories such as indexible pallets and rotary-tilt tables

NC CODES

- Block Number (N)
- Preparatory Codes (G)
- Miscellaneous Codes (M)
- Primary X Motion (X)
- Primary Y Motion (Y)
- Primary Z Motion (Z)

Preparatory Codes

- G90 Absolute Coordinates
- G91 Relative Coordinates
- G00 Rapid Traverse (non-cutting move)
- G01 Straight Line Interpolation (cutting move
- G02 Circle Interpolation (clockwise)
- G03 Circle Interpolation (c-clockwise)
- G04 Dwell (wait) Pause between motions on all axis. Time in seconds G04F2 pause for 2 sec.
- G05 Pause waits for user intervention.

M Codes - Miscellaneous

- M00 Pause
- M01 Optional stop
- M02 End of Program
- M03 Spindle on
- M05 Spindle off
- M06 Tool Change
- M08 / M09 Accessory # 1 on / off
- M10 / M11 Accessory # 2 on / off

The following is a list of commonly used G Codes for CNC machines and their functionality.

CODE	DESCRIPTION	
G00	Rapid Linear Positioning	
G01	Linear Feed Interpolation	
G02	CW Circular Interpolation	
G03	CCW Circular Interpolation	
G04	Dwell	
G07	Imaginary Axis Designation	
G09	Exact Stop	
G10	Offset Value Setting	
G17	XY Plane Selection	
G18	ZX Plane Selection	
G19	YZ plane Selection	
G20	Input In Inches	
G21	Input In Millimeters	
G22	Stored Stroke Limit On	
G23	Stored Stroke Limit Off	
G27	Reference Point Return Check	
G28	Return To Reference Point	
G29	Return From Reference Point	
G30	Return To 2nd, 3rd and 4th Ref. Point	
G31	Skip Cutting	

- G31 Skip Cutting
- G33 Thread Cutting
- G40 Cutter Compensation Cancel
- G41 Cutter Compensation Left
- G42 Cutter Compensation Right
- G43 Tool Length Compensation + Direction
- G44 Tool Length Compensation Direction
- G45 Tool Offset Increase
- G46 Tool Offset Double
- G47 Tool Offset Double Increase
- G48 Tool Offset Double Decrease
- G49 Tool Length Compensation Cancel
- G50 Scaling Off
- G51 Scaling On
- G52 Local Coordinate System Setting
- G54 Work Coordinate System 1 Selection
- G55 Work Coordinate System 2 Selection

CODE	DESCRIPTION	
G56	Work Coordinate System 3 Selection	
G57	Work Coordinate System 4 Selection	
G58	Work Coordinate System 5 Selection	
G59	Work Coordinate System 6 Selection	
G60	Single Direction Positioning	
G61	Exact Stop Mode	
G64	Cutting Mode	
G65	Custom Macro Simple Call	
G66	Custom Macro Modal Call	
G67	Custom Macro Modal Call Cancel	
G68	Coordinate System Rotation On	
G69	Coordinate System Rotation Off	
G73	Peck Drilling Cycle	
G74	Counter Tapping Cycle	
G76	Fine Boring	
G80	Canned Cycle Cancel	
G81	Drilling Cycle, Spot Boring	
G82	Drilling Cycle, Counter Boring	
G83	Peck Drilling Cycle	
G84	Tapping Cycle	

- G85 Boring Cycle
- G86 Boring Cycle
- G87 Back Boring Cycle
- G88 Boring Cycle
- G89 Boring Cycle
- G90 Absolute Programming
- G91 Incremental Programming
- G92 Programming Of Absolute Zero
- G94 Feed Per Minute
- G95 Feed Per Revolution
- G96 Constant Surface Speed Control
- G97 Constant Surface Speed Control Cancel
- G98 Return To Initial Point In Canned Cycles
- G99 Return To R Point In Canned Cycles

DESCRIPTION		DESCRIPTION	
Program Stop			
Optional Stop			
End of Program			
Spindle On CW			
Spindle On CCW			
	Program Stop Optional Stop End of Program Spindle On CW		

Copyright © 2000 by Surfware, Inc. All Rights Reserved

G and M

CODE	DESCRIPTION	
M05	Spindle Stop	
M06	Tool Change	
M07	Mist Coolant On	
M08	Flood Coolant On	
M09	Coolant Off	

M19	Spindle Orientation On	
M20	Spindle Orientation Off	
M21	Tool Magazine Right	
M22	Tool Magazine Left	
M23	Tool Magazine Up	
M24	Tool Magazine Down	
M25	Tool Clamp	
M26	Tool Unclamp	
M27	Clutch Neutral On	
M28	Clutch Neutral Off	
M30	End Program, Stop and Rewind	
M98	Call Sub Program	
M99	End Sub Program	

2016 IISc Bangalore

8.15 Match the following part programming codes with their respective function

Part programming codes	Functions	
P. G01	I. Spindle stop	
Q. G03	II. Spindle rotation, clockwise	
R. M03	III. Circular interpolation, anticlockwise	
S. M05	IV. Linear interpolation	

2010 IIT Guwahati

- 8.9 In a CNC program block, N002 G02 G91 X40 Z40G02 and G91 refer to
 - (A) Circular interpolation in counter clockwise direction and incremental dimension
 - (B) Circular interpolation in counter clockwise direction and absolute dimension
 - (C) Circular interpolation in clockwise direction and incremental dimension
 - (D) Circular interpolation in clockwise direction and absolute dimension

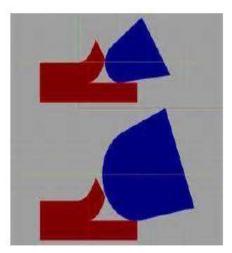
2009 IIT Roorkee

8.12 Match the following:

NC Code		e Definition	
P.	M05	1.	Absolute coordinate
Q.	G01		system
R.	G04	2.	Dwell
S.	G90	3.	Spindle stop
		4.	Linear interpolation

2014 IIT Kharagpur

8.13 For the CNC programing, match Group A with Group B :

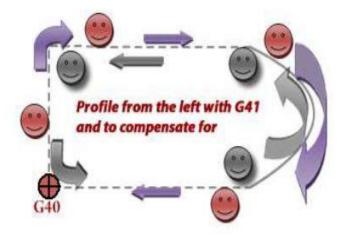

Group A

- P: Circular interpolation, counter clockwise
- Q : Dwell
- R : Circular interpolation, clockwise
- S : Point to point countering

Group B

- 1. G02 2. G03
- 3. G04 4. G00

What is tool compensation??


And, why do we really need it?

- Ability to manufacture accurate parts
- Dimensional errors can be immediately detected and avoided
- The world market for machine tools in 2007 is estimated to be 71 billion US dollars, which represents a growth of 18% compared to 2006.

Types of tool compensation

- Cutter Radius(or Diameter) Compensation
- Tool Nose Radius Compensation
- Tool Length Compensation

Tool Diameter Compensation

Why Cutter Diameter Compensation?

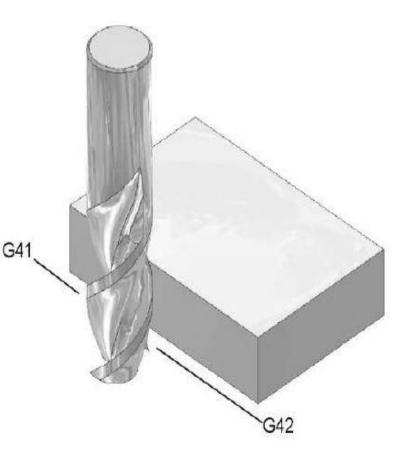
- When machining finished surfaces with the side of a milling cutter (generally called profiling), the accuracy of the finished surface depends on the cutter accuracy and how closely the cutter diameter matches the programmed size.
- · Cutters wear causing size changes in profiled surfaces.
- · Reground endmills are always smaller than nominal size.

Note: this feature is also frequently called Cutter Radius Compensation. We use Diameter Compensation to avoid confusion with turning center operation.

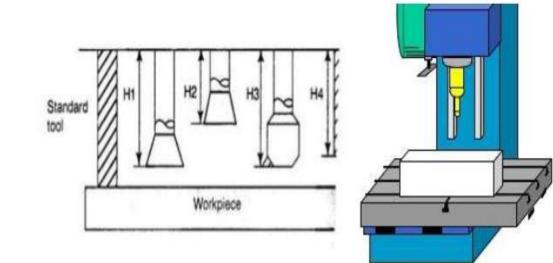
Cutter Diameter Compensation Codes

Code	Application
G40	Cancel cutter diameter compensation.
G41	Compensate for the cutter to the LEFT of the programmed path.
G42	Compensate for the cutter to the RIGHT of the programmed path.
Dtt	tt is the tool number. D tells the controller where to find the cutter's diameter.

Determining G41 or G42


G41: the cutter is to the left of the part when looking in the direction of the cut.

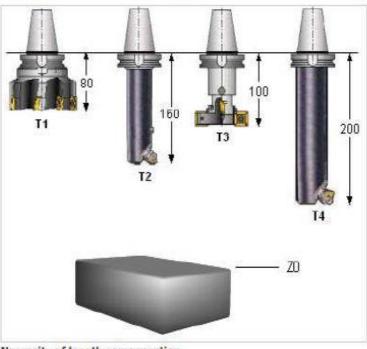
G42: the cutter is to the right of the part when looking in the direction of the cut.


Climb milling features: use G41.

Conventional milling features: use G42.

Since we normally climb mill, we will generally use G41 on a machining center.

Tool Length Compensation



Why Tool Length Compensation is Needed

- No Two Tools Will Have Exactly the Same Length
- Tool's Length Will Vary from Each Time it is Assembled
- Tool Data is Entered Separately from the Program
- Sizing and Trial Machining Must Often be Done

Tool length compensation

Tools used in machining a part are of different lengths. It would be extremely tedious to write the program with these lengths taken into consideration.

Necessity of length compensation

In this picture, for example, to move to the position Z0, the programed coordinate would be Z80, Z160, Z100 and Z200 for tools T1 to T4 respectively. Each time that a tool got worn out and you had to change it, you would have to change the Z coordinates in the whole program.

To eliminate this problem, machines have a length compensation feature. The program is written for the drawing coordinates, without considering tool lengths lengths. The lengths are entered in the controller's memory. The controller does the job of adjusting for the tool length. A rapid motion to the

Tool length compensation G Codes

- G43 Tool length offset plus
- G44 Tool length offset minus
- G49 Tool length compensation cancel

TOOL TURRET

Fig. 11.14 Typical tool turret used in CNC drilling/milling machines

CHAIN TYPE MAGZINE

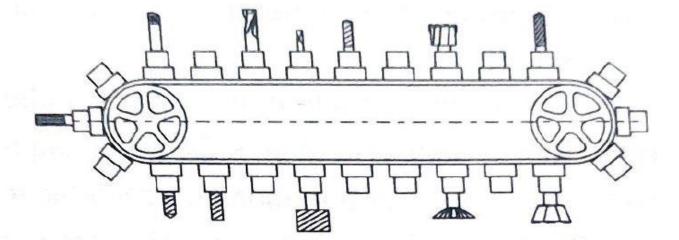
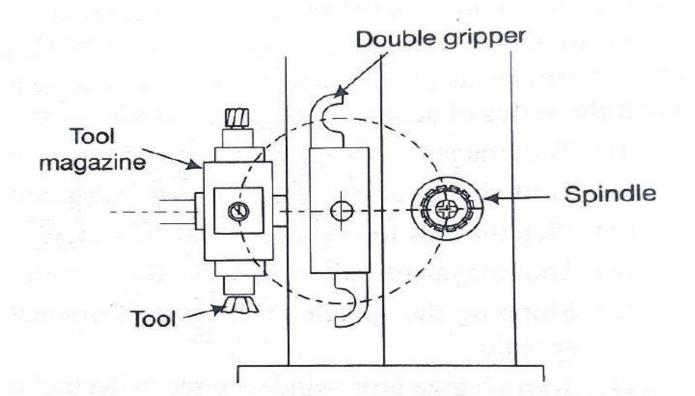



Fig. 11.17 Chain-type tool magazine for holding larger number of spindle tooling used in CNC machining centres

TOOL CHANGE ARAM

Fig. 11.20 One common type of tool-change arm used for tool changing with a double gripper

TOOL CHANGE PROCEDURE

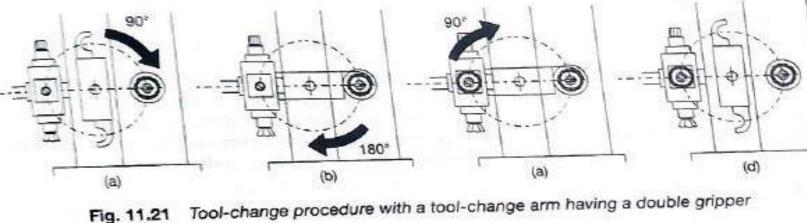
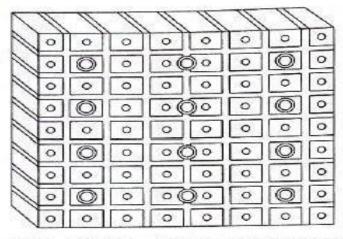



Fig. 11.21

18 12

Work holding devices

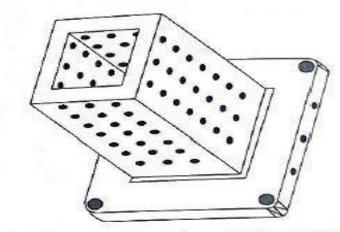
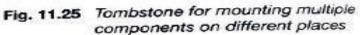



Fig. 11.24 Grid plate with holes which can be used as a machine table

In addition to these standard fixture bases, a large number of fixture elements such as angle blocks and base elements (Fig. 11.26) are used to quickly clamp the workpieces in position.

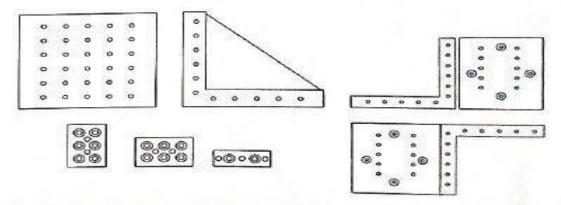


Fig. 11.26 Modular fixture elements used for supporting complex workpieces

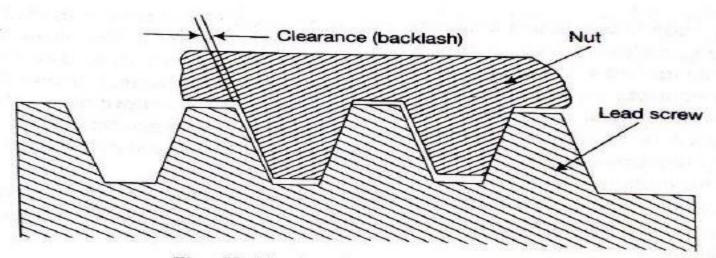
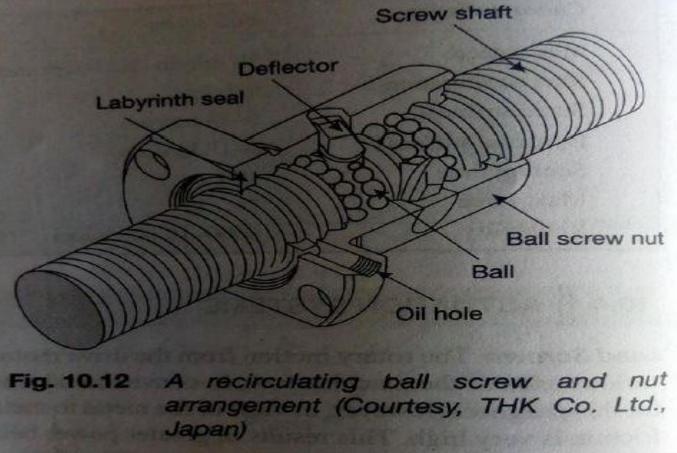



Fig. 10.11 Lead screw with Acme nut

Labyrinth seal Japan)

Recirculating ball screw & nut

Recirculating ball screw and nut arrangement with external return tube

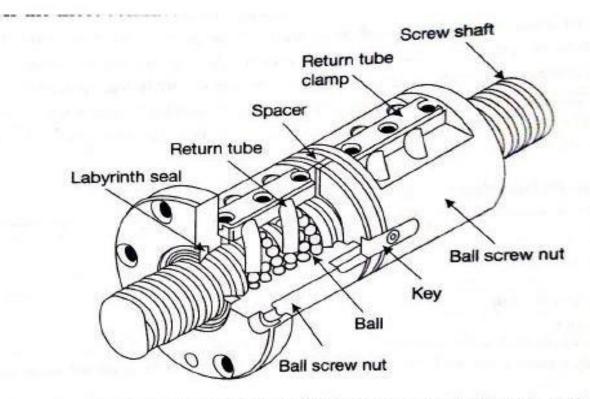
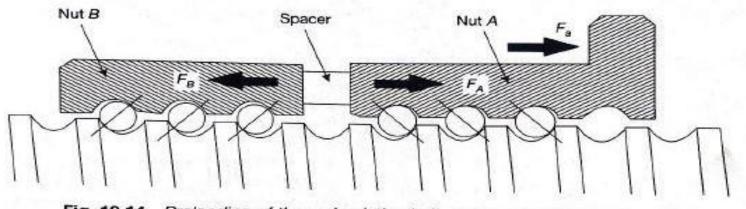
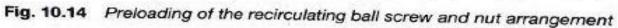




Fig. 10.13 A recirculating ball screw and nut arrangement with external return tube (Courtesy, THK Co. Ltd., Japan)

Preloading of the recirculating ball screw and nut arrangement

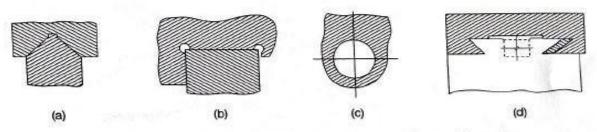


Fig. 10.15 Conventional slideway systems used in machine tools

Antifriction guide ways

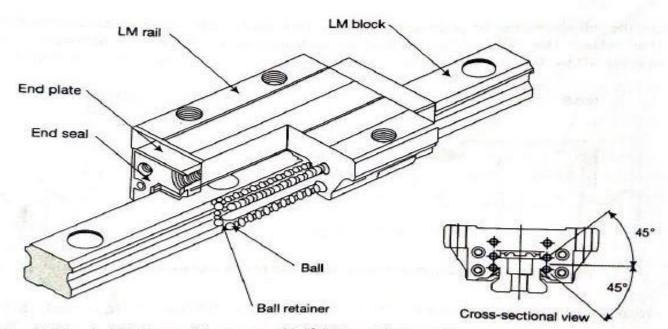


Fig. 10.16 Antifriction guideways used in CNC machine tools (Courtesy, THK Co. Ltd., Japan)