
Chapter 1

Object-Oriented Analysis and Design

Disclaimer

• Slides come from a variety of sources:

– Craig Larman-developed slides; author of this classic textbook.

– Dr. Constantinos Constantinides, University of London

– Slides from the University of Pittsburg

– Slides from many of my existing slides on these same topics

– New slides from sources unknown…

2

Chapter 1

• Chapter one covers a host of many topics central to today‟s

technologies.

• These skills are essential in today‟s professional community.

• We will talk about (in some detail) iterative development,

evolutionary development, the Unified Process, agile

approaches, UML,

• Later on we will advance into more complex concepts that

address framework design and architectural analysis.

• Please note that the materials are meant to be foundational.

3

Thinking in Objects and UML - 1

• The Unified Modeling Language (UML) is a standard

diagramming notation; sometimes referred to as a blueprint.

• It is NOT OOA/OOD or a method

• Only a notation for capturing objects and the relationships

among objects (dependency; inheritance; realizes; aggregates, . .)

• UML is language-independent

• Analysis and design provide software “blueprints” captured in
UML.

• Blueprints serve as a tool for thought and as a form of
communication with others.

4

Thinking in Objects and UML – 2

• But it is far more essential to „think‟ in terms of objects as

providing „services‟ and accommodating „responsibilities.‟

• Discuss: What is meant by „services?‟ How indicated?

– How might you think these „services‟ impact the design of classes?

– How might a client access these services?

– What is encapsulation? How does it relate to reusability? Self-

governance? Design?

• Discuss: What is meant by „responsibilities?‟

– Encapsulation of data and services?

5

6

Thinking in Terms of Objects and UML - 3

• Object-Oriented Analysis (Overview)

– An investigation of the problem (rather than how a solution is defined)

– During OO analysis, there is an emphasis on finding and describing the

objects (or concepts) in the problem domain.

– For example, concepts in a Library Information System include Book,

and Library.

– High level views found in the application domain.

– Oftentimes called domain objects; entities.

7

Thinking in Terms of Objects and UML - 4

• Object-Oriented Design

– Emphasizes a conceptual solution that fulfills the requirements.

– Need to define software objects and how they collaborate to meet the
requirements.

– For example, in the Library Information System, a Book software object
may have a title attribute and a getChapter method.

• What are the methods needed to process the attributes?

• Designs are implemented in a programming language.

– In the example, we will have a Book class in Java.

8

Thinking in Terms of Objects and UML – 5

From Design to Implementation

Book

title

print()

public class Book {

public void print();

private String title;

}

Book

(concept)

Analysis

investigation

of the problem

Design

logical solution

Construction

code

Domain concept Representation in

analysis of concepts

Representation in an

object-oriented

programming language.

Can you see the services / responsibilities in the Book class?

Thinking in Objects and UML-6

• Then too, there are sets of proven design solutions to problems

that are considered „best practices.‟

– Certain „groupings‟ of classes with specific responsibilities / interfaces.

– These provide specific solutions to specific problems.

– Called Design Patterns

• We will discuss (much later) these standard patterns and how to

apply them to develop solutions to common design problems.

9

Thinking in Objects and UML-7

• Of course, design (solution to requirements) „assume‟ a robust

requirements analysis has taken place.

• Use Cases are often used to capture stories of requirements and

are often views as „constituting‟ the functional requirements,

but NOT the software quality factors (non-functional

requirements).

• Use Cases are not specifically designed to be object-oriented,

but rather are meant to capture how an application will be used.

• Many methods for capturing requirements.

• We will concentrate on Use Cases (ahead).

10

11

Basic Terms: Iterative, Evolutionary, and Agile

1. Introduction

• Iterative - the entire project will be composed of min-projects

and will iterate the same activities again and again (but on

different part of the project AND with different emphases) until

completion.

• Evolutionary (or incremental) - the software grows by

increments (to be opposed to the traditional, and somewhat old-

fashioned, Waterfall model of software development).

• Agile - we will use a light approach to software development

rather than a very rigid one (which may be needed for a safety-

critical system for example)

• This kind of approach seems better at treating software

development as a problem solving activity; also the use of

objects makes it amenable.

12

Our Approach:

•We need a Requirements Analysis approach with OOA/OOD need

to be practiced in a framework of a development process.

•We will adopt an agile approach (light weight, flexible) in the

context of the Unified Process, which can be used as a sample

iterative development process.

– Within this process, the principles can be discussed.

•Please note that there are several other contexts that may be used,

such as Scrum, XP, Feature-Driven Development, Lean

Development, Crystal Methods and others…and we will look at a

few of these.

13

Why the Unified Process:
• The Unified Process is a popular iterative software development

process.

• Iterative and evolutionary development involves relatively early

programming and testing of a partial system, in repeated cycles.

• It typically also means that development starts before the exact

software requirements have been specified in detail;

• Feedback (based on measurement) is used to clarify, correct and

improve the evolving specification:

• This is in complete contrast to what we usually mean by

engineering!

14

2. What is the Unified Process?

• The UP is very flexible and open and can include other practices

from other methods such as Extreme Programming (XP) or

Scrum for example.

– e.g. XP‟s test-driven development, refactoring can fit within a UP

project; So can Scrum‟s daily meeting.

– Being pragmatic in adapting a particular process to your needs is an

important skill : all projects are different.

We will be studying all of the topics found in Fig. 1.1

Topics and Skills

UML notation

Requirements

analysis

Principles and

guidelines

Patterns

Iterative

development with

an agile Unified

Process

OOA/D

The Rush to Code

• Critical ability to develop is to think in terms of objects and to

artfully assign responsibilities to software objects.

• Talk at great length in COP 3538 about encapsulation and

assigning methods to objects where the data is defined…

• One cannot design a solution if the requirements are not

understood.

• One cannot implement the design if the design is faulty.

• If I could only stop my students….

16

The Rush to Code

• Analysis: - investigate the problem and the requirements.

– What is needed? Required functions? Investigate domain objects.

– Problem Domain

– The Whats of a system.

– Do the right thing (analysis)

• Design:

– Conceptual solution that meets requirements.

– Not an implementation

– E.g. Describe a database schema and software objects.

– Avoid the CRUD activities and commonly understood functionality.

– The Solution Domain

– The „Hows‟ of the system

– Do the thing right (design)

17

What is Object-Oriented Analysis and Design

• OOA: we find and describe business objects or concepts in the

problem domain

• OOD: we define how these software objects collaborate to

meet the requirements.

– Attributes and methods.

• OOP: Implementation: we implement the design objects in,

say, Java, C++, C#, etc.

18

Homework Assignment #1

due: 19 Sep start of class. Hardcopy please.

• Using the model below, develop a two-three page discussion

outlining the four activities listed and present the major features of

each.

A short definition and example of a domain model, interaction

diagram, and class diagram is sufficient, but be prepared to discuss

each of these.

Also, have a general idea about use cases – what they are designed

to do and what they are not designed to do.

19

Define Use Cases Define Domain Model Define Interaction

Diagrams
Define Design Class

Diagrams

Homework Assignment #1 (continued)

• Be aware that this concludes chapter 1. But there are a number

of pages in this chapter that I have not explicitly discussed in

class. You are responsible for these, and some of this may

appear in your midterm exams.

20

