OOPS THROUGH JAVA

Interfaces



Interfaces

In order to work with a class, you need to
understand the public methods

o methods, return types,...

o after you instantiate, what can you do with it?
The implementation details are irrelevant to
using the class

o you don’t have to know how things are done
Inside the class

S SARANYA DEVI, AP/CSE, KEC



Interfaces

A Java interface is a collection of abstract methods
and constants

An abstract method Is a method header without a
method body

An abstract method can be declared using the
modifier abstract, but because all methods in an

Interface are abstract, usually it is left off

An Interface Is used to establish a set of methods
that a class will implement

S SARANYA DEVI, AP/CSE, KEC



‘ Interfaces

Interface is a reserved word

l None of the methods in
an interface are given
public interface Doable a definition (body)

{
public void doThis() ;

public int doThat() ;
public void doThis2 (float wvalue, char ch);
public boolean doTheOther (int num) ;
| /
A semicolon immediately
follows each method header

S SARANYA DEVI, AP/CSE, KEC



Interfaces

An Iinterface cannot be instantiated

Methods in an interface have public visibility by
default

A class formally implements an interface by:
o stating so in the class header

o providing implementations for each abstract method in the
Interface

If a class asserts that it implements an interface, it
must define all methods in the interface

S SARANYA DEVI, AP/CSE, KEC



‘ Interfaces

public class CanDo implements Doable

{ '\

public void doThis () . .
Implements is a

{ // whatever reserved word

}

- - \
public void doThat () Each method listed

{ > In Doable is
} // whatever given a definition

// etc.

S SARANYA DEVI, AP/CSE, KEC



Interfaces

A class that implements an interface can
Implement other methods as well

In addition to (or instead of) abstract
methods, an interface can contain

constants

When a class implements an interface, it
gains access to all its constants

S SARANYA DEVI, AP/CSE, KEC



Comparison with Inheritance

Interfaces don’t define any method actions...
you need to fill in all the detalls

It essentially just gives a basic collection of
method names

Not a strict hierarchy

Important: can implement several Interfaces
Can use this to “fake” multiple inheritance

S SARANYA DEVI, AP/CSE, KEC



Interfaces

A class can implement multiple interfaces

The class must implement all methods in all
Interfaces listed in the header

class ManyThings implements
interfacel, interface?2

// all methods of both interfaces

S SARANYA DEVI, AP/CSE, KEC



Example:The Comparable Interface

Any class can implement Comparable to

provide a mechanism for comparing objects
of that type

Specifically, implementing Comparable
means that you need a method CompareTo

1f (objl.compareTo(obj2) < 0)

System.out.println ("objl 1s less
than obj2");

S SARANYA DEVI, AP/CSE, KEC



The Comparable Interface

It's up to the programmer to determine what
makes one object less than another

For example, you may define the
compareTo method of an Employee class

to order employees by name (alphabetically)
or by employee number

The implementation of the method can be as
straightforward or as complex as needed for
the situation

S SARANYA DEVI, AP/CSE, KEC



Requiring Interfaces

Interface names can be used like class

names in the parameters passed to a method
public boolean 1isless (Comparable a,
Comparable Db)

return a.compareTo(b) < 0;

)
Any class that “implements Comparable”
can be used for the arguments to this method

S SARANYA DEVI, AP/CSE, KEC



‘ Interfaces in UML

= Interfaces are easy to spot in class diagrams

l.ook! An interface.

/

<<Interface>> |
Compal‘able S —— Inte&

+compare To(other:Object): int J
implements: dotted

line, open-arrowhead

S SARANYA DEVI, AP/CSE, KEC



Interfaces

You could write a class that implements certain
methods (such as compareTo) without formally
Implementing the interface (Comparable)

However, formally establishing the relationship
between a class and an interface allows Java to
deal with an object in certain ways

Interfaces are a key aspect of object-oriented design
In Java

S SARANYA DEVI, AP/CSE, KEC



Built-1n Interfaces

The Java standard library includes lots more
built-in interfaces

o they are listed in the API with the classes

Examples:
0 Clonable —implements a clone () method
0 Formattable — can be formatted with printf

S SARANYA DEVI, AP/CSE, KEC



The Iterator Interface

As we discussed in Chapter 5, an iterator is an object that

provides a means of processing a collection of objects one at a
time

An iterator is created formally by implementing the Tterator
Interface, which contains three methods

The hasNext method returns a boolean result — true if there are
items left to process

The next method returns the next object in the iteration

The remove method removes the object most recently returned
by the next method

S SARANYA DEVI, AP/CSE, KEC



The Iterator Interface

By implementing the Tterator interface, a
class formally establishes that objects of that
type are iterators

The programmer must decide how best to
Implement the iterator functions

Once established, the for-each version of the
for loop can be used to process the items In

the iterator

S SARANYA DEVI, AP/CSE, KEC



Collections

Collection IS a general interface for any
type that can store multiple values

Any object c that iImplements Collections
has these methods

a0 c.add (e)

a C.remove (e)

O c.size ()

S SARANYA DEVI, AP/CSE, KEC



Collection Sub-Interfaces

Interfaces that are derived from Collection

Set: unordered, can’'t add the same object
twice

List: ordered, adds new methods
0 get (1) : getthe ith element
0 set (i, e) : setthe it elementto e

S SARANYA DEVI, AP/CSE, KEC



Collection Implementations

Also In the standard library: many good
iImplementations of these interfaces

List: ArrayList, Stack, LinkedList
Sets: HashSet, TreeSet

Each implementation has some differences...
suitable for particular problems

0 e.g. additional methods, different type restrictions,
etc.

S SARANYA DEVI, AP/CSE, KEC



Example: Pairs

A class to represent a pair (Xx,y) of values
Both values represented with Double
class Pair

{
Double x, vy;

public Pair (double x, double vy)
{

this.x = new Double (xX);
this.y = new Double(y);

S SARANYA DEVI, AP/CSE, KEC



Example: Pairs

Want to be able to compare..

class Pair implements Comparable<Pair>

{

public int compareTo (Pair other)
{
1f(this.x.equals (other.x))
return this.y.compareTo (other.y);
else
return this.x.compareTo (other.x);

S SARANYA DEVI, AP/CSE, KEC



Implementing versus Inheriting

Implementing an Interface Is very similar to

Inheriting a class
class MyClass i1mplements MyInterface {..}

o Takes everything from Mylnterface and puts it in
MyClass

o Except all the methods must be implemented
here

o No previous implementations to fall back on

S SARANYA DEVI, AP/CSE, KEC



Interfaces vs. Abstract Classes

Similarities

o neither can be instantiated

o both can be used as the starting point for a class
Differences

o A class can contain implementations of methods

o A class can implement many interfaces, but only
one class

S SARANYA DEVI, AP/CSE, KEC



Comparison

In order of “abstractness’:

o Interface
no method implementations
can’t be instantiated

o Abstract class
some method implementations
can’t be instantiated

o Non-abstract class
all methods implemented
can be instantiated

S SARANYA DEVI, AP/CSE, KEC



