
OOPS THROUGH JAVA

Interfaces

S SARANYA DEVI, AP/CSE, KEC

Interfaces

 In order to work with a class, you need to

understand the public methods

 methods, return types,…

 after you instantiate, what can you do with it?

 The implementation details are irrelevant to

using the class

 you don’t have to know how things are done

inside the class

S SARANYA DEVI, AP/CSE, KEC

Interfaces

 A Java interface is a collection of abstract methods

and constants

 An abstract method is a method header without a

method body

 An abstract method can be declared using the
modifier abstract, but because all methods in an

interface are abstract, usually it is left off

 An interface is used to establish a set of methods

that a class will implement

S SARANYA DEVI, AP/CSE, KEC

Interfaces

public interface Doable

{

 public void doThis();

 public int doThat();

 public void doThis2 (float value, char ch);

 public boolean doTheOther (int num);

}

interface is a reserved word

None of the methods in

an interface are given

a definition (body)

A semicolon immediately

follows each method header

S SARANYA DEVI, AP/CSE, KEC

Interfaces

 An interface cannot be instantiated

 Methods in an interface have public visibility by
default

 A class formally implements an interface by:

 stating so in the class header

 providing implementations for each abstract method in the
interface

 If a class asserts that it implements an interface, it
must define all methods in the interface

S SARANYA DEVI, AP/CSE, KEC

Interfaces

public class CanDo implements Doable

{

 public void doThis ()

 {

 // whatever

 }

 public void doThat ()

 {

 // whatever

 }

 // etc.

}

implements is a

reserved word

Each method listed

in Doable is

given a definition

S SARANYA DEVI, AP/CSE, KEC

Interfaces

 A class that implements an interface can

implement other methods as well

 In addition to (or instead of) abstract

methods, an interface can contain

constants

 When a class implements an interface, it

gains access to all its constants

S SARANYA DEVI, AP/CSE, KEC

Comparison with Inheritance

 Interfaces don’t define any method actions…

you need to fill in all the details

 It essentially just gives a basic collection of

method names

 Not a strict hierarchy

 Important: can implement several Interfaces

 Can use this to “fake” multiple inheritance

S SARANYA DEVI, AP/CSE, KEC

Interfaces

 A class can implement multiple interfaces

 The class must implement all methods in all
interfaces listed in the header

class ManyThings implements

interface1, interface2

{

 // all methods of both interfaces

}

S SARANYA DEVI, AP/CSE, KEC

Example:The Comparable Interface

 Any class can implement Comparable to

provide a mechanism for comparing objects

of that type

 Specifically, implementing Comparable

means that you need a method CompareTo

if (obj1.compareTo(obj2) < 0)

 System.out.println ("obj1 is less

than obj2");

S SARANYA DEVI, AP/CSE, KEC

The Comparable Interface

 It's up to the programmer to determine what
makes one object less than another

 For example, you may define the
compareTo method of an Employee class
to order employees by name (alphabetically)
or by employee number

 The implementation of the method can be as
straightforward or as complex as needed for
the situation

S SARANYA DEVI, AP/CSE, KEC

Requiring Interfaces

 Interface names can be used like class

names in the parameters passed to a method
 public boolean isLess(Comparable a,

 Comparable b)

 {

 return a.compareTo(b) < 0;

 }

 Any class that “implements Comparable”

can be used for the arguments to this method

S SARANYA DEVI, AP/CSE, KEC

Interfaces in UML

 Interfaces are easy to spot in class diagrams

S SARANYA DEVI, AP/CSE, KEC

Interfaces

 You could write a class that implements certain
methods (such as compareTo) without formally

implementing the interface (Comparable)

 However, formally establishing the relationship

between a class and an interface allows Java to

deal with an object in certain ways

 Interfaces are a key aspect of object-oriented design

in Java

S SARANYA DEVI, AP/CSE, KEC

Built-in Interfaces

 The Java standard library includes lots more

built-in interfaces

 they are listed in the API with the classes

 Examples:

 Clonable – implements a clone() method

 Formattable – can be formatted with printf

S SARANYA DEVI, AP/CSE, KEC

The Iterator Interface

 As we discussed in Chapter 5, an iterator is an object that
provides a means of processing a collection of objects one at a
time

 An iterator is created formally by implementing the Iterator
interface, which contains three methods

 The hasNext method returns a boolean result – true if there are
items left to process

 The next method returns the next object in the iteration

 The remove method removes the object most recently returned
by the next method

S SARANYA DEVI, AP/CSE, KEC

The Iterator Interface

 By implementing the Iterator interface, a

class formally establishes that objects of that

type are iterators

 The programmer must decide how best to

implement the iterator functions

 Once established, the for-each version of the
for loop can be used to process the items in

the iterator

S SARANYA DEVI, AP/CSE, KEC

Collections

 Collection is a general interface for any

type that can store multiple values

 Any object c that implements Collections

has these methods

 c.add(e)

 c.remove(e)

 c.size()

S SARANYA DEVI, AP/CSE, KEC

Collection Sub-Interfaces

 Interfaces that are derived from Collection

 Set: unordered, can’t add the same object

twice

 List: ordered, adds new methods

 get(i): get the ith element

 set(i,e): set the ith element to e

S SARANYA DEVI, AP/CSE, KEC

Collection Implementations

 Also in the standard library: many good

implementations of these interfaces

 List: ArrayList, Stack, LinkedList

 Sets: HashSet, TreeSet

 Each implementation has some differences…

suitable for particular problems

 e.g. additional methods, different type restrictions,

etc.

S SARANYA DEVI, AP/CSE, KEC

Example: Pairs

 A class to represent a pair (x,y) of values

 Both values represented with Double

 class Pair

 {

 Double x, y;

 public Pair(double x, double y)

 {

 this.x = new Double(x);

 this.y = new Double(y);

 }

 }

S SARANYA DEVI, AP/CSE, KEC

Example: Pairs

 Want to be able to compare..

 class Pair implements Comparable<Pair>

 {

….

 public int compareTo(Pair other)

 {

 if(this.x.equals(other.x))

 return this.y.compareTo(other.y);

 else

 return this.x.compareTo(other.x);

 }

 }

S SARANYA DEVI, AP/CSE, KEC

Implementing versus Inheriting

 Implementing an Interface is very similar to

inheriting a class
class MyClass implements MyInterface {…}

 Takes everything from MyInterface and puts it in

MyClass

 Except all the methods must be implemented

here

 No previous implementations to fall back on

S SARANYA DEVI, AP/CSE, KEC

Interfaces vs. Abstract Classes

 Similarities

 neither can be instantiated

 both can be used as the starting point for a class

 Differences

 A class can contain implementations of methods

 A class can implement many interfaces, but only

one class

S SARANYA DEVI, AP/CSE, KEC

Comparison

 In order of “abstractness”:

 Interface

 no method implementations

 can’t be instantiated

 Abstract class

 some method implementations

 can’t be instantiated

 Non-abstract class

 all methods implemented

 can be instantiated

S SARANYA DEVI, AP/CSE, KEC

