
OOPS THROUGH JAVA

Interfaces

S SARANYA DEVI, AP/CSE, KEC

Interfaces

 In order to work with a class, you need to

understand the public methods

 methods, return types,…

 after you instantiate, what can you do with it?

 The implementation details are irrelevant to

using the class

 you don’t have to know how things are done

inside the class

S SARANYA DEVI, AP/CSE, KEC

Interfaces

 A Java interface is a collection of abstract methods

and constants

 An abstract method is a method header without a

method body

 An abstract method can be declared using the
modifier abstract, but because all methods in an

interface are abstract, usually it is left off

 An interface is used to establish a set of methods

that a class will implement

S SARANYA DEVI, AP/CSE, KEC

Interfaces

public interface Doable

{

 public void doThis();

 public int doThat();

 public void doThis2 (float value, char ch);

 public boolean doTheOther (int num);

}

interface is a reserved word

None of the methods in

an interface are given

a definition (body)

A semicolon immediately

follows each method header

S SARANYA DEVI, AP/CSE, KEC

Interfaces

 An interface cannot be instantiated

 Methods in an interface have public visibility by
default

 A class formally implements an interface by:

 stating so in the class header

 providing implementations for each abstract method in the
interface

 If a class asserts that it implements an interface, it
must define all methods in the interface

S SARANYA DEVI, AP/CSE, KEC

Interfaces

public class CanDo implements Doable

{

 public void doThis ()

 {

 // whatever

 }

 public void doThat ()

 {

 // whatever

 }

 // etc.

}

implements is a

reserved word

Each method listed

in Doable is

given a definition

S SARANYA DEVI, AP/CSE, KEC

Interfaces

 A class that implements an interface can

implement other methods as well

 In addition to (or instead of) abstract

methods, an interface can contain

constants

 When a class implements an interface, it

gains access to all its constants

S SARANYA DEVI, AP/CSE, KEC

Comparison with Inheritance

 Interfaces don’t define any method actions…

you need to fill in all the details

 It essentially just gives a basic collection of

method names

 Not a strict hierarchy

 Important: can implement several Interfaces

 Can use this to “fake” multiple inheritance

S SARANYA DEVI, AP/CSE, KEC

Interfaces

 A class can implement multiple interfaces

 The class must implement all methods in all
interfaces listed in the header

class ManyThings implements

interface1, interface2

{

 // all methods of both interfaces

}

S SARANYA DEVI, AP/CSE, KEC

Example:The Comparable Interface

 Any class can implement Comparable to

provide a mechanism for comparing objects

of that type

 Specifically, implementing Comparable

means that you need a method CompareTo

if (obj1.compareTo(obj2) < 0)

 System.out.println ("obj1 is less

than obj2");

S SARANYA DEVI, AP/CSE, KEC

The Comparable Interface

 It's up to the programmer to determine what
makes one object less than another

 For example, you may define the
compareTo method of an Employee class
to order employees by name (alphabetically)
or by employee number

 The implementation of the method can be as
straightforward or as complex as needed for
the situation

S SARANYA DEVI, AP/CSE, KEC

Requiring Interfaces

 Interface names can be used like class

names in the parameters passed to a method
 public boolean isLess(Comparable a,

 Comparable b)

 {

 return a.compareTo(b) < 0;

 }

 Any class that “implements Comparable”

can be used for the arguments to this method

S SARANYA DEVI, AP/CSE, KEC

Interfaces in UML

 Interfaces are easy to spot in class diagrams

S SARANYA DEVI, AP/CSE, KEC

Interfaces

 You could write a class that implements certain
methods (such as compareTo) without formally

implementing the interface (Comparable)

 However, formally establishing the relationship

between a class and an interface allows Java to

deal with an object in certain ways

 Interfaces are a key aspect of object-oriented design

in Java

S SARANYA DEVI, AP/CSE, KEC

Built-in Interfaces

 The Java standard library includes lots more

built-in interfaces

 they are listed in the API with the classes

 Examples:

 Clonable – implements a clone() method

 Formattable – can be formatted with printf

S SARANYA DEVI, AP/CSE, KEC

The Iterator Interface

 As we discussed in Chapter 5, an iterator is an object that
provides a means of processing a collection of objects one at a
time

 An iterator is created formally by implementing the Iterator
interface, which contains three methods

 The hasNext method returns a boolean result – true if there are
items left to process

 The next method returns the next object in the iteration

 The remove method removes the object most recently returned
by the next method

S SARANYA DEVI, AP/CSE, KEC

The Iterator Interface

 By implementing the Iterator interface, a

class formally establishes that objects of that

type are iterators

 The programmer must decide how best to

implement the iterator functions

 Once established, the for-each version of the
for loop can be used to process the items in

the iterator

S SARANYA DEVI, AP/CSE, KEC

Collections

 Collection is a general interface for any

type that can store multiple values

 Any object c that implements Collections

has these methods

 c.add(e)

 c.remove(e)

 c.size()

S SARANYA DEVI, AP/CSE, KEC

Collection Sub-Interfaces

 Interfaces that are derived from Collection

 Set: unordered, can’t add the same object

twice

 List: ordered, adds new methods

 get(i): get the ith element

 set(i,e): set the ith element to e

S SARANYA DEVI, AP/CSE, KEC

Collection Implementations

 Also in the standard library: many good

implementations of these interfaces

 List: ArrayList, Stack, LinkedList

 Sets: HashSet, TreeSet

 Each implementation has some differences…

suitable for particular problems

 e.g. additional methods, different type restrictions,

etc.

S SARANYA DEVI, AP/CSE, KEC

Example: Pairs

 A class to represent a pair (x,y) of values

 Both values represented with Double

 class Pair

 {

 Double x, y;

 public Pair(double x, double y)

 {

 this.x = new Double(x);

 this.y = new Double(y);

 }

 }

S SARANYA DEVI, AP/CSE, KEC

Example: Pairs

 Want to be able to compare..

 class Pair implements Comparable<Pair>

 {

….

 public int compareTo(Pair other)

 {

 if(this.x.equals(other.x))

 return this.y.compareTo(other.y);

 else

 return this.x.compareTo(other.x);

 }

 }

S SARANYA DEVI, AP/CSE, KEC

Implementing versus Inheriting

 Implementing an Interface is very similar to

inheriting a class
class MyClass implements MyInterface {…}

 Takes everything from MyInterface and puts it in

MyClass

 Except all the methods must be implemented

here

 No previous implementations to fall back on

S SARANYA DEVI, AP/CSE, KEC

Interfaces vs. Abstract Classes

 Similarities

 neither can be instantiated

 both can be used as the starting point for a class

 Differences

 A class can contain implementations of methods

 A class can implement many interfaces, but only

one class

S SARANYA DEVI, AP/CSE, KEC

Comparison

 In order of “abstractness”:

 Interface

 no method implementations

 can’t be instantiated

 Abstract class

 some method implementations

 can’t be instantiated

 Non-abstract class

 all methods implemented

 can be instantiated

S SARANYA DEVI, AP/CSE, KEC

