Secure Hash Algorithm

- Secure Hash Algorithm was developed by NIST in 1993
- Generally SHA referred as SHA-1
- SHA design is based on hash function MD4
- Different version of SHAs are SHA-1, SHA-256, SHA-384, SHA-512

	SHA-1	SHA-224	SHA-256	SHA-384	SHA-512
Message Digest Size	160	224	256	384	512
Message Size	< 2 ⁶⁴	< 2 ⁶⁴	< 2 ⁶⁴	< 2 ¹²⁸	< 2 ¹²⁸
Block Size	512	512	512	1024	1024
Word Size	32	32	32	64	64
Number of Steps	80	64	64	80	80

Table 11.3 Comparison of SHA Parameters

Note: All sizes are measured in bits.

Message Digest Generation Using SHA-512

Steps for SHA-512 logic

- 1. Append padding bits
- 2. Append length
- 3. Initialize hash buffer
- 4. Process message in 1024 bit(128 word)blocks
- 5. Output

- 1. Append padding bits
 - Number of padding bits is in the range of 1 to 1024
 - Padding consists of a single-1 bit followed by the necessary number of 0-bits
- 2. Append length
 - A block of 128 bits is appended to the message
 - Sequence of 1024-bit blocks M₁, M₂,....M_n
- 3. Initialize hash buffer
 - A 512 bit buffer is used to hold intermediate and final results of the hash function
 - The buffer can be represented as eight 64-bit registers (a,b,c,d,e,f,g,h)
 - These registers are initialized as hexadecimal values

4. Process message in 1024 bit blocks

5. Output

- After all N 1024-bit blocks have been processed, the output from the Nth stage is the 512-bit message digest
- We can summerize the behavior of SHA-512 as follows:
 - H₀ = IV
 - $H_i = SUM64(H_{i-1}, abcdefgh_i)$

$$-$$
 MD = H_N

where,

- IV : Initial value of the abcdefgh buffer
- abcdefgh_i: output of the last round of processing of the *i*th message block
- N : number of blocks in the message
- SUM₆₄: Addition modulo 2₆₄ performed separately on each word of the pair of inputs
- MD : final message digest value