
Learn Programming with UDay

Stack Data Structure- Stack ADT
A Linear Data Structure that stores data in a continues / sequential
passion and follows LIFO/ FILO strategy.

LIFO - Last In First Out

FILO - First In Last Out

Step1

30

20

10

30

Step2

20

10
20

Step3

10 10
1

2

3

10 20 30

Learn Programming with UDay

Terminology - Stack ADT
Top: It is a pointer connected
to the top most index of stack

Any operation on stack can
be performed only using TOP
variable

Initial value of top is -1

50

40

30

20

10

Overflow: It is a state of stack that
represents stack is FULL.

We cant insert any values in
Overflow state of stack

30

20

10

TOP

Underflow: It is a state of stack
that represents stack is EMPTY.

We cant Delete any values in
Underflow state of stack

Learn Programming with UDay

Operations on - Stack ADT

1. PUSH(x)

2. POP()

3. DISPLAY()

4. PEEK()

5. COUNT()

Learn Programming with UDay

PUSH(x) Operation:
Using PUSH operation we can insert a new value into the stack

STEPS:

Step1: Check Overflow state of the stack

 if(top>=Max-1)

 then

 Overflow

Step2: top++

 Stack[top] = x

 Print x is inserted

50 [4]

40 [3]

30 [2]

20 [1]

10 [0]

TOP

60

40

New Value

[4]

[3]

30 [2]

20 [1]

10 [0]

TOP

[4]

[3]

30 [2]

20 [1]

10 [0]

40

TOP

Learn Programming with UDay

POP() Operation:
Using POP operation we can delete a existing value from the stack

STEPS:

Step1: Check Underflow state of the stack

 if(top==-1)

 then

 Underflow

Step2: Print x is inserted

 top- -

TOP= -1

[4]

40 [3]

30 [2]

20 [1]

10 [0]

TOP

[4]

[3]

30 [2]

20 [1]

10 [0]

TOP

40

Deleted Value

[4]

[3]

[2]

[1]

[0]

40

Learn Programming with UDay

DISPLAY() Operation:
Using DISPLAY operation we can display all the existing value in the stack

STEPS:

Step1: Check Underflow state of the stack

 if(top==-1)

 then

 Underflow

Step2: for(i=top; i>=0; i- -)

 then

 print Stack[i]

TOP= -1

[4]

40 [3]

30 [2]

20 [1]

10 [0]

i=3

[4]

[3]

[2]

[1]

[0]

i=2

i=1

i=0

Learn Programming with UDay

PEEK() Operation:
Using PEEK operation we can display topmost value in the stack

STEPS:

Step1: Check Underflow state of the stack

 if(top==-1)

 then

 Underflow

Step2: print Stack[top] is top most value

TOP= -1

[4]

40 [3]

30 [2]

20 [1]

10 [0]

[4]

[3]

[2]

[1]

[0]

TOP

Learn Programming with UDay

COUNT() Operation:
Using COUNT operation we can display number of values available in the stack

STEPS:

Step1: Check Underflow state of the stack

 if(top==-1)

 then

 Underflow

Step2: print top+1 values are available in the stack

TOP= -1

[4]

40 [3]

30 [2]

20 [1]

10 [0]

[4]

[3]

[2]

[1]

[0]

TOP=3

Learn Programming with UDay

Queue Data Structure – Queue ADT

Queue is a linear data structure, that stores values in
continues/sequential passion.

Queue fallows FIFO/LILO strategy

FIFO: First in First Out

LILO: Last in Last Out

Queue is represented Horizontally

0 1 2 3

10 20 30

front

 rear

Learn Programming with UDay
Terminology– Queue ADT

Front: Front is a variable, used to
perform delete operations on
queue

Rear: Rear is a variable, used to
perform insert operations on
queue

Default value is -1 for front and
rear variable

0 1 2 3

10 20

front

 rear

Underflow: It is a state that
represents Queue is Empty
We can not Delete any value from
Queue in Underflow state

Overflow: It is a state that represents
Queue is Full
We can not Insert any value from
Queue in Underflow state

0 1 2 3

front = rear = -1
OR

front == rear

10 20 30 40

0 1 2 3

rear > = max -1
 rear

front

 rear

Learn Programming with UDay

Operations– Queue ADT
1. ENQUEUE(X)

2. DEQUEUE()

3. DISPLAY()

4. PEEK()

5. COUNT()

Learn Programming with UDay

Enqueue(x) Operation:

Using this operation we can insert a new value into the Queue

STEPS:

 Step1: Check Overflow state of the Queue

 if(rear > = Max -1)

 then

 Overflow

 Step2: rear + +

 Queue[rear] = x

0 1 2 3

10 20 30

front

 rear

40

10 20 30 40

0 1 2 3

rear > = max -1
 rear

Learn Programming with UDay

Dequeue() Operation:

Using this operation we can Delete a value from the Queue

STEPS:

 Step1: Check Underflow state of the Queue

 if(front = = rear)

 then

 Underflow

 Step2: print Queue[rear] is deleted

 front + +

0 1 2 3

10

front

 rear

0 1 2 3

front = rear = -1
OR

front == rear

front

 rear

20 30 40

Learn Programming with UDay
Display() Operation:

Using this operation we can Display all the values in Queue

STEPS:

 Step1: Check Underflow state of the Queue

 if(front = = rear)

 then

 Underflow

 Step2: for(i= front +1, i <=rear; i++)

 then

 print Queue[i]

0 1 2 3

10

i

 rear

0 1 2 3

front = rear = -1
OR

front == rear

front

 rear

20 30 40

10 20 30 40

 front

Learn Programming with UDay
Peek() Operation:

Using this operation we can Display the topmost value in
Queue

STEPS:

 Step1: Check Underflow state of the Queue

 if(front = = rear)

 then

 Underflow

 Step2: print Queue[rear] is topmost value

0 1 2 3

10

 rear

0 1 2 3

front = rear = -1
OR

front == rear

front

 rear

20 30 40

40

 front

Learn Programming with UDay
Count() Operation:
Using this operation we can Display the number of values
present in Queue

STEPS:

 Step1: Check Underflow state of the Queue

 if(front = = rear)

 then

 Underflow

 Step2: for(i= front +1, i <=rear; i++)

 then

 count + +

 end loop

Print count values

0 1 2 3

10

 rear

0 1 2 3

front = rear = -1
OR

front == rear

front

 rear

20 30 40

 front

coun
t

Learn Programming with UDay

Thank you

