
Artificial Intelligence
Subject Code: 20A05502T

UNIT IV - Natural Language for Communication

SYNTACTIC ANALYSIS - PARSING

SYNTACTIC ANALYSIS (PARSING)
• Parsing is the process of analyzing a string of

words to uncover its phrase structure,
according to the rules of a grammar.

• Top Down Parsing

• The S, starting symbol and search top down for
a tree that has the words as its leaves, or

• Bottom up Parsing

• Start with the words and search bottom up for
a tree that culminates in an S.

• Both top-down and bottom-up parsing can be
inefficient, because they can end up repeating
effort in areas of the search space that lead to
dead ends.

Parse Tree
• Parse tree for the sentence “Every wumpus

smells”, according to the grammar E0.

• Each interior node of the tree is labeled with
its probability.

• The probability of the tree as a whole is
0.9×0.25×0.05×0.15×0.40×0.10=0.0000675.

• Since this tree is the only parse of the
sentence, that number is also the probability
of the sentence.

• The tree can also be written in linear form as

• [S [NP [Article every] [Noun wumpus]][VP
[Verb smells]]].

• The E0 grammar generates a wide range of English sentences such as
the following:

• John is in the pit

• The wumpus that stinks is in 2 2

• Mary is in Boston and the wumpus is near 3 2

Drawbacks
• Consider the following two sentences:

• Have the students in section A of Computer Science III take the exam.

• Have the students in section A of Computer Science III taken the exam?

• Even though they share the first 10 words, these sentences have very different
parses, because the first is a command and the second is a question.

• A left-to-right parsing algorithm would have to guess whether

• the first word is part of a command or a question and

• will not be able to tell if the guess is correct until at least the eleventh word,
take or taken.

• If the algorithm guesses wrong, it will have to backtrack all the way to the first
word and reanalyze the whole sentence under the other interpretation.

• To avoid this source of inefficiency we can use dynamic programming.

Dynamic Programming:
• In dynamic programming, “every time we analyze a substring, store the

results so we won’t have to reanalyze it later”.

• For example,

• “the students in section B of Computer Science III” is an NP,

• record that result in a data structure as a chart.

• Algorithms that do this are called chart parsers.

• In context-free grammars, any phrase that was found in the context of one
branch of the search space, can work as well in any other branch of the
search space.

• There are many types of chart parsers;

• a bottom-up version called the CYK algorithm, after its inventors, John
Cocke, Daniel Younger, and Tadeo Kasami

CYK algorithm
• Given a sequence of words,

• it finds the most probable
derivation for the whole
sequence and for each
subsequence.

• It returns the whole table, P,
in which an entry P[X, start ,
len] is the probability of the
most probable X of length len
starting at position start .

• If there is no X of that size at
that location, the probability
is 0.

CYK algorithm
• it requires a grammar with all rules in one of two very specific formats:

• Lexical rules of the form X → word, and

• Syntactic rules of the form X → Y Z |word

• This grammar format, called Chomsky Normal Form,

• any context-free grammar can be automatically transformed into
Chomsky Normal Form.

• The CYK algorithm uses

• space of O(n2m) for the P table,

• time O(n3m).

• where n is the number of words in the sentence, and

• m is the number of nonterminal symbols in the grammar.

Thank You

