

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR Draft Academic Regulations of M.Tech. (Full Time/Regular) Programme (Effective for the students admitted into I year from the Academic Year 2021-22 and onwards)

Jawaharlal Nehru Technological University Anantapur (JNTUA) offers **Two** Years (**Four** Semesters) full-time Master of Technology (M.Tech.) Degree programme, under Choice Based Credit System (CBCS) in different branches of Engineering and Technology with different specializations.

The Jawaharlal Nehru Technological University Anantapur shall confer M. Tech. degree on candidates who are admitted to the programme and fulfill all the requirements for the award of the degree.

1. Award of the M.Tech. Degree

A student will be declared eligible for the award of the M.Tech. degree if he/she fulfils the following:

- 1.1 Pursues a course of study for not less than two academic years and not more than four academic years.
- 1.2 Registers for 70 credits and secures all 70 credits.
- 2. Students, who fail to fulfil all the academic requirements for the award of the degree within four academic years from the year of their admission, shall forfeit their seat in M.Tech. course and their admission stands cancelled.

3. Programme of Study:

The following M.Tech. Specializations are offered at present in different branches of Engineering and Technology in non-autonomous affiliated colleges:

S.No.	Discipline	Name of the Specialization	Code
01	Civil Engineering	Structural Engineering	20
		Geotechnical Engineering	12
		Computer Aided Structural Engineering	35
		Construction Planning & Management	21
		Structural Engineering & Construction Management	91
		Highway Engineering	93
02	Electrical and Electronics	Electrical Power Systems	07
	Engineering	Power Electronics	43
		Power Electronics & Electrical Drives	54
		Power Systems	82
03	Mechanical Engineering	CAD / CAM	04
		Machine Design	15
		Thermal Science & Energy Systems	11
		Refrigeration & Air- Conditioning	17
		Advanced Manufacturing Systems	87

		Thermal Engineering	88
		Production Engineering & Engineering Design	90
		Production Engineering	94
04	Electronics and	Digital Electronics & Communication Systems	38
	Communication	Electronics & Communication Engineering	70
	Engineering	Digital Systems & Computer Electronics	06
		Embedded Systems	55
		VLSI Design	
		VLSI System Design	57
		VLSI	
		VLSI & Embedded Systems	68
		Embedded Systems & VLSI	
		VLSI and Embedded Systems Design	85
05	Computer Science and	Computer Science & Engineering	58
	Engineering	Software Engineering	25
		Computer Networks	08
		Artificial Intelligence & Machine Learning	98

and any other specializations as approved by AICTE/University from time to time.

4. Eligibility for Admissions:

- 4.1 Admission to the M. Tech Program shall be made subject to the eligibility, qualification and specialization prescribed by the A.P. State Government/University from time to time.
- 4.2 Admissions shall be made either on the basis of either the merit rank or Percentile obtained by the qualified student in the relevant qualifying GATE Examination/ the merit rank obtained by the qualified student in an entrance test conducted by A.P. State Government (APPGECET) for M.Tech. programmes/an entrance test conducted by University/on the basis of any other exams approved by the University, subject to reservations as laid down by the Govt. from time to time.

5. Programme related terms:

5.1 *Credit:* A unit by which the course work is measured. It determines the number of hours of instructions required per week. One credit is equivalent to one hour of teaching (Lecture/Tutorial) or two hours of practical work/field work per week.

Credit definition:

1 Hr. Lecture (L) per week	1 credit
1 Hr. Tutorial (T) per week	1 credit
1 Hr. Practical (P) per week	0.5 credit

- 5.2 *Academic Year:* Two consecutive (one odd + one even) semesters constitute one academic year.
- 5.3 *Choice Based Credit System (CBCS):* The CBCS provides choice for students to select from the prescribed courses.

6. Programme Pattern:

- 6.1 Total duration of the of M.Tech. programme is two academic years
- 6.2 Each academic year of study is divided into two semesters.
- 6.3 Each Semester shall be of 22 weeks duration (inclusive of Examinations), with a minimum of 90 instructional days per semester.
- 6.4 The student shall not take more than four academic years to fulfill all the academic requirements for the award of M.Tech. degree from the date of commencement of first year first semester, failing which the student shall forfeit the seat in M.Tech. programme.
- 6.5 The medium of instruction of the programme (including examinations and project reports) will be in English only.
- 6.6 All subjects/courses offered for the M.Tech. degree programme are broadly classified as follows:

S.No.	Broad Course Classification	Course Category	Description				
1.	Core Courses	Foundational & Professional Core Courses (PC)	Includes subjects related to the parent discipline/department/branch of Engineering				
2.	Elective Courses	Professional Elective Courses (PE) Open Elective Courses (OE)	Includes elective subjects related to the parent discipline/department/ branch of Engineering Elective subjects which include inter-disciplinary subjects or subjects in an area outside the parent discipline which are of importance in the context of special skill development				
3.	Research	Research methodology & IPR Technical Seminar Cocurricular Activities Dissertation	To understand importance and process of creation of patents through researchEnsures preparedness of students to undertake major projects/Dissertation, based on core contents related to specializationAttendingconferences, scientific presentations and other scholarly activitiesM.Tech. Project or Major Project				
4.	Audit Courses	Mandatory noncredit courses	Covering subjects of developing desired attitude among the learners is on the line of initiatives such as Unnat Bharat Abhiyan, Yoga, Value education etc.				

- 6.7 The college shall take measures to implement Virtual Labs (https://www.vlab.co.in) which provide remote access to labs in various disciplines of Engineering and will help student in learning basic and advanced concept through remote experimentation. Student shall be made to work on virtual lab experiments during the regular labs.
- 6.8 A faculty advisor/mentor shall be assigned to each specialization to advise students on the programme, its Course Structure and Curriculum, Choice of Courses, based on his competence, progress, pre-requisites and interest.
- 6.9 Preferably 25% course work for the theory courses in every semester shall be conducted in the blended mode of learning.

7. Attendance Requirements:

- 7.1 A student shall be eligible to appear for the University external examinations if he/she acquires i) a minimum of 50% attendance in each course and ii) 75% of attendance in aggregate of all the courses.
- 7.2 Condonation of shortage of attendance in aggregate up to 10% (65% and above and below 75%) in each semester may be granted by the College Academic Committee.
- 7.3 Condonation of shortage of attendance shall be granted only on genuine and valid reasons on representation by the candidate with supporting evidence
- 7.4 Students whose shortage of attendance is not condoned in any semester are not eligible to take their end examination of that class.
- 7.5 A stipulated fee shall be payable towards condonation of shortage of attendance.
- 7.6 A student will not be promoted to the next semester unless he satisfies the attendance requirements of the present semester. They may seek re-admission into that semester when offered next.
- 7.7 If any candidate fulfils the attendance requirement in the present semester, he shall not be eligible for readmission into the same class.
- 7.8 If the learning is carried out in blended mode (both offline & online), then the total attendance of the student shall be calculated considering the offline and online attendance of the student.

8. Evaluation – Distribution and Weightage of Marks:

The performance of a student in each semester shall be evaluated subject - wise (irrespective of credits assigned), for a maximum of 100 marks for theory and 100 marks for practical, based on Internal Evaluation and End Semester Examination.

- 8.1 There shall be five units in each of the theory subjects. For the theory subjects 60 marks will be for the End Examination and 40 marks will be for Internal Evaluation.
- 8.2 Two Internal Examinations shall be conducted for 30 marks each, one in the middle of the Semester and the other immediately after the completion of instruction. First mid examination shall be conducted for I & II units of the syllabus and second mid examination for III, IV & V units. Each mid exam shall be conducted for a total duration of 120 minutes with 3 questions (without choice) each question for 10 marks. Final Internal marks for a total of 30 marks shall be arrived at by considering the marks secured by the student in both the internal examinations with 80% weightage to the better internal exam and 20% to the other. There shall be an online examination (TWO) conducted during the respective mid examinations by the college for the remaining 10 marks with 20 objective questions.

- 8.3 The following pattern shall be followed in the End Examination:
 - i. Five questions shall be set from each of the five units with either/or type for 12 marks each.
 - ii. All the questions have to be answered compulsorily.
 - iii. Each question may consist of one, two or more bits.
- 8.4 For practical subjects, 60 marks shall be for the End Semester Examinations and 40 marks will be for internal evaluation based on the day-to-day performance.

The internal evaluation based on the day-to-day work-10 marks, record- 10 marks and the remaining 20 marks to be awarded by conducting an internal laboratory test. The end examination shall be conducted by the examiners, with a breakup mark of Procedure-10, Experimentation-25, Results-10, Viva-voce-15.

- 8.5 There shall be a **Technical Seminar** during I year II semester for internal evaluation of 100 marks. A student under the supervision of a faculty member, shall collect the literature on a topic and critically review the literature and submit it to the department in a report form and shall make an oral presentation before the Project Review Committee consisting of Head of the Department, supervisor/mentor and two other faculty members of the department. The student has to secure a minimum of 50% of marks, to be declared successful. If he fails to obtain the minimum marks, he has to reappear for the same as and when supplementary examinations are conducted. The Technical seminar shall be conducted anytime during the semester as per the convenience of the Project Review Committee and students. There shall be no external examination for Technical Seminar.
 - 8.6 There shall be Mandatory **Audit courses** in I & II semesters for zero credits. There is no external examination for audit courses. However, attendance shall be considered while calculating aggregate attendance and student shall be declared to have passed the mandatory course only when he/she secures 50% or more in the internal examinations. In case, the student fails, a re-examination shall be conducted for failed candidates for 40 marks every six months/semester satisfying the conditions mentioned in item 1 & 2 of the regulations.
 - 8.7 A candidate shall be deemed to have secured the minimum academic requirement in a subject if he secures a minimum of 40% of marks in the End Examination and a minimum aggregate of 50% of the total marks in the End Semester Examination and Internal Evaluation taken together.
- 8.8 In case the candidate does not secure the minimum academic requirement in any of the subjects he/she has to reappear for the Semester Examination either supplementary or regular in that subject or repeat the course when next offered or do any other specified subject as may be required.

8.9 The laboratory records and mid semester test papers shall be preserved for a minimum of 3 years in the respective institutions as per the University norms and shall be produced to the Committees of the University as and when the same are asked for.

9. Credit Transfer Policy

As per University Grants Commission (Credit Framework for Online Learning Courses through SWAYAM) Regulation, 2016, the University shall allow up to a maximum of 40% of the total courses being offered in a particular Programme in a semester through the Online Learning courses through SWAYAM.

- 9.1 The University shall offer credit mobility for MOOCs and give the equivalent credit weightage to the students for the credits earned through online learning courses through SWAYAM platform.
- 9.2 The online learning courses available on the SWAYAM platform will be considered for credit transfer. SWAYAM course credits are as specified in the platform
- 9.3 Student registration for the MOOCs shall be only through the institution, it is mandatory for the student to share necessary information with the institution
- 9.4 The institution shall select the courses to be permitted for credit transfer through SWAYAM. However, while selecting courses in the online platform institution would essentially avoid the courses offered through the curriculum in the offline mode.
- 9.5 The institution shall notify at the beginning of semester the list of the online learning courses eligible for credit transfer in the forthcoming Semester.
- 9.6 The institution shall also ensure that the student has to complete the course and produce the course completion certificate as per the academic schedule given for the regular courses in that semester
- 9.7 The institution shall designate a faculty member as a Mentor for each course to guide the students from registration till completion of the credit course.
- 9.8 The university shall ensure no overlap of SWAYAM MOOC exams with that of the university examination schedule. In case of delay in SWAYAM results, the university will re-issue the marks sheet for such students.
- 9.9 Student pursuing courses under MOOCs shall acquire the required credits only after successful completion of the course and submitting a certificate issued by the competent authority along with the percentage of marks and grades.
- 9.10 The institution shall submit the following to the examination section of the university:
 - a) List of students who have passed MOOC courses in the current semester along with the certificates of completion.
 - b) Undertaking form filled by the students for credit transfer.
- 9.11 The university shall resolve any issues that may arise in the implementation of this policy from time to time and shall review its credit transfer policy in the

light of periodic changes brought by UGC, SWAYAM, NPTEL and state government.

Note: Students shall also be permitted to register for MOOCs offered through online platforms other than SWAYAM NPTEL. In such cases, credit transfer shall be permitted only after seeking approval of the University at least three months prior to the commencement of the semester.

10. Re-registration for Improvement of Internal Evaluation Marks:

A candidate shall be given one chance to re-register for each subject provided the internal marks secured by a candidate are less than 50% and has failed in the end examination

- 10.1 The candidate should have completed the course work and obtained examinations results for **I**, **II and III** semesters.
- 10.2 The candidate should have passed all the subjects for which the Internal Evaluation marks secured are more than 50%.
- 10.3 Out of the subjects the candidate has failed in the examination due to Internal Evaluation marks secured being less than 50%, the candidate shall be given one chance for each Theory subject and for a maximum of <u>three</u> Theory subjects for Improvement of Internal evaluation marks.
- 10.4 The candidate has to re-register for the chosen subjects and fulfill the academic requirements.
- 10.5 For reregistration the candidates have to apply to the University through the college by paying the requisite fees and get approval from the University before the start of the semester in which re-registration is required
- 10.6 In the event of availing the Improvement of Internal evaluation marks, the internal evaluation marks as well as the End Examinations marks secured in the previous attempt(s) for the reregistered subjects stand cancelled.

11. Evaluation of Project/Dissertation Work:

The Project work shall be initiated at the beginning of the III Semester and the duration of the Project is of two semesters. Evaluation of Project work is for 300 marks with 200 marks for internal evaluation and 100 marks for external evaluation. Internal evaluation of the Project Work – I & Project work – II in III & IV semesters respectively shall be for 100 marks each. External evaluation of final Project work viva voce in IV semester shall be for 100 marks.

A Project Review Committee (PRC) shall be constituted with the Head of the Department as Chairperson, Project Supervisor and one faculty member of the department offering the M.Tech. programme.

- 11.1 A candidate is permitted to register for the Project Work in III Semester after satisfying the attendance requirement in all the subjects, both theory and laboratory (in I & II semesters).
- 11.2 A candidate is permitted to submit Project dissertation with the approval of PRC. The candidate has to pass all the theory, practical and other courses before submission of the Thesis.
- 11.4 Project work shall be carried out under the supervision of teacher in the parent department concerned.
- 11.5 A candidate shall be permitted to work on the project in an industry/research organization on the recommendation of the Head of the Department. In such cases, one of the teachers from the department concerned would be the internal guide and an expert from the industry/ research organization concerned shall act as co-supervisor/ external guide. It is mandatory for the candidate to make full disclosure of all data/results on which they wish to base their dissertation. They cannot claim confidentiality simply because it would come into conflict with the Industry's or R&D laboratory's own interests. A certificate from the external supervisor is to be included in the dissertation.
- 11.6 Continuous assessment of Project Work I and Project Work II in III & IV semesters respectively will be monitored by the PRC.
- 11.7 The candidate shall submit status report by giving seminars in three different phases (two in III semester and one in IV semester) during the project work period. These seminar reports must be approved by the PRC before submission of the Project Thesis.
- 11.8 After registration, a candidate must present in Project Work Review I, in consultation with his Project Supervisor, the title, objective and plan of action of his Project work to the PRC for approval within four weeks from the commencement of III Semester. Only after obtaining the approval of the PRC can the student initiate the project work.
- 11.9 The Project Work Review II in III semester carries internal marks of 100. Evaluation should be done by the PRC for 50 marks and the Supervisor will evaluate the work for the other 50 marks. The Supervisor and PRC will examine the Problem Definition, Objectives, Scope of Work, Literature Survey in the same domain and progress of the Project Work.
- 11.10 A candidate has to secure a minimum of 50% of marks to be declared successful in Project Work Review II. Only after successful completion of Project Work Review II, candidate shall be permitted for Project Work Review III in IV Semester. The unsuccessful students in Project Work Review II shall reappear for it as and when supplementary examinations are conducted.
- 11.11 The Project Work Review III in IV semester carries 100 internal marks. Evaluation should be done by the PRC for 50 marks and the Supervisor will evaluate it for the other 50 marks. The PRC will examine the overall progress

of the Project Work and decide whether or not eligible for final submission. A candidate has to secure a minimum of 50% of marks to be declared successful in Project Work Review - III. If he fails to obtain the required minimum marks, he has to reappear for Project Work Review - III after a month.

- 11.12 For the approval of PRC the candidate shall submit the draft copy of dissertation to the Head of the Department and make an oral presentation before the PRC.
- 11.13 After approval from the PRC, the students are required to submit a report showing that the plagiarism is within 30%. The dissertation report will be accepted only when the plagiarism is within 30%, which shall be submitted along with the dissertation report.
- 11.14 Research paper related to the Project Work shall be published in conference proceedings/UGC recognized journal. A copy of the published research paper shall be attached to the dissertation.
- 11.15 After successful plagiarism check and publication of research paper, three copies of the dissertation certified by the supervisor and HOD shall be submitted to the College.
- 11.16 The dissertation shall be adjudicated by an external examiner selected by the University. For this, the Principal of the College shall submit a panel of three examiners as submitted by the supervisor concerned and department head for each student. However, the dissertation will be adjudicated by one examiner nominated by the University.
- 11.17 If the report of the examiner is not satisfactory, the candidate shall revise and resubmit the dissertation, in the time frame as decided by the PRC. If report of the examiner is unfavorable again, the thesis shall be summarily rejected. The candidate has to reregister for the project and complete the project within the stipulated time after taking the approval from the University
- 11.18 If the report of the examiner is satisfactory, the Head of the Department shall coordinate and make arrangements for the conduct of Project Viva voce exam.
- 11.19 The Project Viva voce examinations shall be conducted by a board consisting of the Supervisor, Head of the Department and the external examiner who has adjudicated the dissertation. For Dissertation Evaluation (Viva voce) in IV Sem. there are external marks of 100 and it is evaluated by external examiner. The candidate has to secure a minimum of 50% marks in Viva voce exam.
- 11.20 If he fails to fulfill the requirements as specified, he will reappear for the Project Viva voce examination only after three months. In the reappeared examination also, if he fails to fulfill the requirements, he will not be eligible for the award of the degree.

12. Credits for Co-curricular Activities

The credits assigned for co-curricular activities shall be given by the principals of the colleges and the same shall be submitted to the University.

A Student shall earn 02 credits under the head of co-curricular activities, viz., attending Conference, Scientific Presentations and Other Scholarly Activities.

Name of the Activity	Maximum Credits / Activity
Participation in National Level Seminar/ Conference / Workshop	1
/Training programs (related to the specialization of the student)	
Participation in International Level Seminar / Conference /	2
workshop/Training programs held outside India (related to the	
specialization of the student)	
Academic Award/Research Award from State Level/National	1
Agencies	
Academic Award/Research Award from International Agencies	2
Research / Review Publication in National Journals (Indexed in	1
Scopus / Web of Science)	
Research / Review Publication in International Journals with	2
Editorial board outside India (Indexed in Scopus / Web of	
Science)	

Following are the guidelines for awarding Credits for Co-curricular Activities

Note:

- i) Credit shall be awarded only for the first author. Certificate of attendance and participation in a Conference/Seminar is to be submitted for awarding credit.
- ii) Certificate of attendance and participation in workshops and training programs (Internal or External) is to be submitted for awarding credit. The total duration should be at least one week.
- iii) Participation in any activity shall be permitted only once for acquiring required credits under cocurricular activities

13. Grading:

As a measure of the student's performance, a 10-point Absolute Grading System using the following Letter Grades and corresponding percentage of marks shall be followed:

After each course is evaluated for 100 marks, the marks obtained in each course will be converted to a corresponding letter grade as given below, depending on the range in which the marks obtained by the student fall.

Range in which the marks	Grade	Grade points
in the subject fall		Assigned
≥ 90	S (Superior)	10
$\geq 80 < 90$	A (Excellent)	9
$\geq 70 < 80$	B (Very Good)	8
$\geq 60 < 70$	C (Good)	7
\geq 50 < 60	D (Pass)	6
< 50	F (Fail)	0
Absent	Ab (Absent)	0

Structure of Grading of Academic Performance

- i) A student obtaining Grade 'F' or Grade 'Ab' in a subject shall be considered failed and will be required to reappear for that subject when it is offered the next supplementary examination.
- ii) For noncredit audit courses, "Satisfactory" or "Unsatisfactory" shall be indicated instead of the letter grade and this will not be counted for the computation of SGPA/CGPA/Percentage.

Computation of Semester Grade Point Average (SGPA) and Cumulative Grade Point Average (CGPA):

The Semester Grade Point Average (SGPA) is the ratio of sum of the product of the number of credits with the grade points scored by a student in all the courses taken by a student and the sum of the number of credits of all the courses undergone by a student, i.e.,

 $SGPA = \Sigma (C_i \times G_i) / \Sigma C_i$

where, C_i is the number of credits of the i^{th} subject and G_i is the grade point scored by the student in the i^{th} course.

i) The Cumulative Grade Point Average (CGPA) will be computed in the same manner considering all the courses undergone by a student over all the semesters of a program, i.e.,

 $CGPA = \Sigma (C_i \times S_i) / \Sigma C_i$

where " S_i " is the SGPA of the ith semester and C_i is the total number of credits up to that semester.

- ii) Both SGPA and CGPA shall be rounded off to 2 decimal points and reported in the transcripts.
- iii) While computing the SGPA the subjects in which the student is awarded Zero grade points will also be included.

Grade Point: It is a numerical weight allotted to each letter grade on a 10-point scale. Letter Grade: It is an index of the performance of students in a said course. Grades are denoted by letters S, A, B, C, D and F.

14. Award of Class:

After a student has satisfied the requirements prescribed for the completion of the program and is eligible for the award of M. Tech. Degree, he shall be placed in one of the following three classes:

Class Awarded	Percentage of Marks to be secured
First Class with Distinction	≥70%
First Class	$< 70\% \ge 60\%$
Pass Class	$< 60\% \ge 50\%$

15. **Exit Policy:** The student shall be permitted to exit with a PG Diploma based on his/her request to the university through the respective institution at the end of first year subject to passing all the courses in first year.

The University shall resolve any issues that may arise in the implementation of this policy from time to time and shall review the policy in the light of periodic changes brought by UGC, AICTE and State government.

16. Withholding of Results:

If the candidate has any case of in-discipline pending against him, the result of the candidate shall be withheld, and he will not be allowed/promoted into the next higher semester. The issue of degree is liable to be withheld in such cases.

17. Transitory Regulations

Discontinued, detained, or failed candidates are eligible for readmission as and when the semester is offered after fulfilment of academic regulations. Candidates who have been detained for want of attendance or not fulfilled academic requirements or who have failed after having undergone the course in earlier regulations or have discontinued and wish to continue the course are eligible for admission into the unfinished semester from the date of commencement of class work with the same or equivalent subjects as and when subjects are offered, subject to Section 2 and they will follow the academic regulations into which they are readmitted.

18. General:

- 17.1 The academic regulations should be read as a whole for purpose of any interpretation.
- 17.2 Disciplinary action for Malpractice/improper conduct in examinations is appended.
- 17.3 There shall be no places transfer within the constituent colleges and affiliated colleges of Jawaharlal Nehru Technological University Anantapur.
- 17.4 Where the words "he", "him", "his", occur in the regulations, they include "she", "her", "hers".
- 17.5 In the case of any doubt or ambiguity in the interpretation of the above rules, the decision of the Vice-Chancellor is final.
- 17.6 The University may change or amend the academic regulations or syllabi at any time and the changes or amendments shall be made applicable to all the students on rolls with effect from the dates notified by the University.

RULES FOR

DISCIPLINARY ACTION FOR MALPRACTICES / IMPROPER CONDUCT IN EXAMINATIONS

	Nature of Malpractices/Improper conduct	Punishment
	If the candidate:	
1.(a)	Possesses or keeps accessible in examination hall, any paper, note book, programmable calculators, Cell phones, pager, palm computers or any other form of material concerned with or related to the subject of the examination (theory or practical) in which he is appearing but has not made use of (material shall include any marks on the body of the candidate which can be used as an aid in the subject of the examination)	Expulsion from the examination hall and cancellation of the performance in that subject only.
(b)	Gives assistance or guidance or receives it from any other candidate orally or by any other body language methods or communicates through cell phones with any candidate or persons in or outside the exam hall in respect of any matter.	Expulsion from the examination hall and cancellation of the performance in that subject only of all the candidates involved. In case of an outsider, he will be handed over to the police and a case is registered against him.
2.	Has copied in the examination hall from any paper, book, programmable calculators, palm computers or any other form of material relevant to the subject of the examination (theory or practical) in which the candidate is appearing.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted to appear for the remaining examinations of the subjects of that semester/year. The Hall Ticket of the candidate is to be cancelled and sent to the University.
3.	Impersonates any other candidate in connection with the examination.	The candidate who has impersonated shall be expelled from examination hall. The candidate is also debarred for four consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat. The performance of the original candidate who has been impersonated, shall be cancelled in all the subjects of the examination (including practicals and project work) already appeared and shall not be allowed to appear for examinations of the remaining subjects of that semester/year. The candidate is also debarred for four consecutive semesters from class work and all University examinations if his involvement is established. Otherwise, the candidate is debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat. If the imposter is an outsider, he will be handed over to the police and a case is registered against him.

	⁷ के मंसु क ¹⁰	
4. 5.	Smuggles in the Answer book or additional sheet or takes out or arranges to send out the question paper during the examination or answer book or additional sheet, during or after the examination.	Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat. Cancellation of the performance in that subject only.
	writes to the examiner requesting him to award pass	
6.	marks. Refuses to obey the orders of the Chief Superintendent /Assistant - Superintendent /any officer on duty or misbehaves or creates disturbance of any kind in and around the examination hall or organizes a walk out or instigates others to walk out, or threatens the officer-in charge or any person on duty in or outside the examination hall of any injury to his person or to any of his relations whether by words, either spoken or written or by signs or by visible representation, assaults the officer-in-charge, or any person on duty in or outside the examination hall or any of his relations, or indulges in any other act of misconduct or mischief which result in damage to or destruction of property in the examination hall or any part of the College campus or engages in any other act which in the opinion of the officer on duty amounts to use of unfair means or misconduct or has the tendency	In case of students of the college, they shall be expelled from examination halls and cancellation of their performance in that subject and all other subjects the candidate(s) has (have) already appeared and shall not be permitted to appear for the remaining examinations of the subjects of that semester/year. If the candidate physically assaults the invigilator/ officer-in-charge of the Examinations, then the candidate is also debarred and forfeits his/her seat. In case of outsiders, they will be handed over to the police and a police case is registered against them.
7.	to disrupt the orderly conduct of the examination.	The later from the construction letter at some listing
/.	Leaves the exam hall taking away answer script or intentionally tears of the script or any part thereof inside or outside the examination hall.	Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat.
8.	Possess any lethal weapon or firearm in the examination hall.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred and forfeits the seat.
9.	If student of the college, who is not a candidate for the particular examination or any person not connected with the college indulges in any malpractice or improper conduct mentioned in clause 6 to 8.	Student of the colleges expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project

		work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The
		candidate is also debarred and forfeits the seat. Person
		(s) who do not belong to the College will be handed
		over to police and, a police case will be registered
		against them.
10.	Comes in a drunken condition to the examination hall.	Expulsion from the examination hall and cancellation
		of the performance in that subject and all other subjects
		the candidate has already appeared including practical
		examinations and project work and shall not be
		permitted for the remaining examinations of the
		subjects of that semester/year.
11.	Copying detected on the basis of internal evidence,	Cancellation of the performance in that subject only or
	such as, during valuation or during special scrutiny.	in that subject and all other subjects the candidate has
		appeared including practical examinations and project
		work of that semester / year examinations, depending
		on the recommendation of the committee.
12.	If any malpractice is detected which is not covered in	
	the above clauses 1 to 11 shall be reported to the	
	University for further action to award suitable	
	punishment.	

- 1. Malpractices identified by squad or special invigilators
- 2. Punishments to the candidates as per the above guidelines.
- 3. Punishment for institutions: (if the squad reports that the college is also involved in encouraging malpractices)
- 4. A show cause notice shall be issued to the college.
- 5. Impose a suitable fine on the college.
- 6. Shifting the examination center from the college to another college for a specific period of not less than one year.

Note:

Whenever the performance of a student is cancelled in any subject/subjects due to Malpractice, he has to register for End Examinations in that subject/subjects consequently and has to fulfil all the norms required for the award of Degree.

M.TECH. IN EMBEDDED SYSTEMS

COURSE STRUCTURE & SYLLABI

SEMESTER – I

S. No.	Course	Course Name	Category	Hou	irs pe	r	Credi
	codes			L	Т	Р	ts
1.	21D06102	Microcontrollers and Programmable Digital Signal Processors	PC	3	0	0	3
2.	21D06101	Digital System Design with PLDs	PC	3	0	0	3
3.	21D55101a 21D57102 21D06103a	Program Elective – 1 Advanced Microcontrollers CMOS Digital IC Design Advanced Computer Architectures	PE	3	0	0	3
4.	21D06203c 21D55102a 21D06203a	Program Elective – 1 Embedded Real Time Operating Systems Advanced Computer Networks SoC Architecture	PE	3	0	0	3
5.	21D06105	Digital System Design Lab	PC	0	0	4	2
6.	21D06106	Microcontroller and Programmable Digital Signal Processors Lab	PC	0	0	4	2
7.	21DRM101	Research Methodology and IPR	MC	2	0	0	2
8.	21DAC101a 21DAC101b 21DAC101c	Audit Course – I English for Research paper writing Disaster Management Sanskrit for Technical Knowledge	AC	2	0	0	0
	Total						18

M.TECH. IN EMBEDDED SYSTEMS COURSE STRUCTURE & SYLLABI

SEMESTER – II

S.No.	Course	Course Name	Category	Hou	rs per	week	Credit
	codes			L	Т	Р	S
1.	21D06201	Embedded System Design	PC	3	0	0	3
2.	21D55201	Embedded Programming	PC	3	0	0	3
3.	21D55202a 21D55202b	Program Elective – III Sensors and Actuators Modern Control Theory Artificial Intelligence and Machine Learning	PE	3	0	0	3
4.	21D06301b 21D06103b 21D06204a	Program Elective – IV Soft Computing Techniques Design of Fault Tolerant Systems Hardware and Software Co-design	PE	3	0	0	3
5.	21D06205	Embedded System Design Lab	PC	0	0	4	2
6.	21D55202	Embedded Programming Lab	PC	0	0	4	2
7.	21D55203	Technical seminar	PR	0	0	4	2
8.	21DAC201a 21DAC201b 21DAC201c	Audit Course – II Pedagogy Studies Stress Management for Yoga Personality Development through Life Enlightenment Skills	AC	2	0	0	0
Total						18	

M.TECH. IN EMBEDDED SYSTEMS

COURSE STRUCTURE & SYLLABI

SEMSTER - III

S.No.	Course	Course Name	Categor	Ho	urs p	er	Credits
	codes		y		Т	P	
1.	21D06301a 21D06301c 21D55301a	Program Elective – V Embedded Systems Protocols Communication Buses and Interfaces Robotics	PE	3	0	0	3
2.	21DOE301b 21DOE301c 21DOE301e	Open Elective Industrial Safety Business Analytics Waste to Energy	OE	3	0	0	3
3.	21D55302	Dissertation Phase – I	PR	0	0	20	10
4.	21D553013	Co-curricular Activities					2
		Total					18

SEMESTER - IV

S.No.	Course	Course Name	Category	Hours per week		Hours per week		Hours per wee		Hours per w		Hours per		Hours per w		Credits
	codes			L	Т	P										
1.	21D55401	Dissertation Phase – II	PR	0	0	32	16									
		Total					16									

Course Code 21D06102	MICROCONTROLLERS AND PROGRAMMABLE	L 3	Т 0	P	C 3
21D06102	DIGITAL SIGNAL PROCESSORS	3	-	0	3
	Semester			I	
Course Objectiv	66.				
v	about ARM Microcontroller architectural features				
	stand the ARM 'C' Programming for various applications				
	the DSP processor fundamentals and its development tools es (CO): Student will be able to				
	but ARM Microcontroller architectural features				
	nd the ARM 'C' Programming for various applications				
	DSP processor fundamentals and its development tools	-			
UNIT - I				Hrs:	1
	x Processor: Applications, Programming model – Registers, Op				
	Interrupts, Reset Sequence, Instruction Set (ARM and T				
	age, Memory Maps, Memory Access Attributes, Permissions, Bit-	Ban	i Op	eratic	ons,
0	cclusive Transfers. Pipeline, Bus Interfaces.	т.	- 4	TT	
UNIT - II	a Drivity Vester Tables Interment Invests and Danding			Hrs:	14
	es, Priority, Vector Tables, Interrupt Inputs and Pending				
	ervisor and Pendable Service Call, Nested Vectored Interrupt				ISIC
UNIT - III	YSTICK Timer, Interrupt Sequences, Exits, Tail Chaining, Interrup			Hrs:	
	controller- Internal memory, GPIOs, Timers, ADC, UART and othe			HIS:	
interfaces, PWM	•	er se	nai		
UNIT - IV	KIC, WDI.	Ιe	cture	Hrs:	
	SP (P-DSP) Processors: Harvard architecture, Multi port memory, a				
	P-MAC unit, Barrel shifters, Introduction to TI DSP processor fan			nai	
UNIT - V		-	cture	Hrs:	
	re and TMS320C6000 series, architecture study, data paths, cross p			1115.	
	Instruction level architecture of C6000 family, Assembly Inst			mem	orv
	ithmetic, logical operations.	ucti	0115	mem	ory
Textbooks:	nimetie, togical operations.				
	he definitive guide to ARM Cortex-M3", Elsevier, 2nd Edition				
· ·	B. and Bhaskar M. "Digital Signal Processors: Architecture, Progra	amm	ing a	nd	
Applications", T		*****			
Reference Books					
	N, Symes Dominic, Wright Chris, "ARM System Developer's Guid	le: D	esig	ning	and
	rgan Kaufman Publication.	_	8	0	
	ARM System-on-Chip Architecture", Pearson Education				
	nd Tony Givargis, "Embedded System Design", Wiley				
	rences and user manuals on www.arm.com, NXP Semiconductor				
	d Texas Instruments <u>www.ti.com</u>				

M.TECH. IN EMBEDDED SYSTEMS

Course Code	DIGITAL SYSTEM DESIGN with PLDs	L	Т	P	С
21D06101		3	0	0	3
	Semester			[
Course Object	ives:				
• To und	erstand an overview of system design approach using programmable	logi	c dev	vices.	
• To get of	exposed to the various architectural features of CPLDS and FPGAS.				
-	n the methods and techniques of CPLD & FPGA design with EDA to	ols.			
	n software tools used for design process with the help of case studies.				
	nes (CO): Student will be able to	-			
	tand an overview of system design approach using programmable log	ric d	evice	s	
	posed to the various architectural features of CPLDS and FPGAS.	,ie u	eviet		
•	he methods and techniques of CPLD & FPGA design with EDA tools				
		5.			
• Learn s UNIT - I	oftware tools used for design process with the help of case studies.	La	ture	Hrs:	
	Logic Devices: The concept of programmable Logic Devices, SPLI				00
0	AL devices, CPLD-Architecture, Xilinx CPLDs- Altera CPLDs, FPC				C 5,
	hitecture, CLB and slice Stratix LAB and ALM-RAM Blocks, Differ				a v
	locks, Clock Management, I/O standards, Additional features.	enti	ypes	ЛШ	IX
UNIT - II	locks, Clock Management, 1/O standards, Additional features.	La	turo	Hrs:	
	Derivation of Clocked Sequential Circuits with State Graphs and '				
·	y checker, Analysis by signal tracing and timing charts-state tables ar				
	for sequential circuits, Design of a sequence detector, More Complex			-	
•			-	toto	
	elines for construction of state graphs, serial data conversion, Alphan	lume	fic s	late	
graph notation UNIT - III		La	turo	Hrs:	
	uit Design: Design procedure for sequential circuits-design example			1115.	
	gn of Iterative circuits, Design of a comparator, Design of sequential			aina	
	As, Sequential circuit design using CPLDs, Sequential circuit design u				
	testing of Sequential circuits, Overview of computer Aided Design	151115	, 110	JAS,	
UNIT - IV	lesting of Sequential circuits, Overview of computer Alded Design	Ιa	otura	Hrs:	
	g and Test Pattern Generation: Logic Fault Model, Fault detection				
	ce and fault location, Fault dominance, Single stuck at fault model, r				
	ridging Fault model. Fault diagnosis of combinational circuits by con				ai
	ensitization techniques, Boolean difference method, KOHAVI algori				
	gorithm, Random testing, transition count testing, signature analysis				ina
faults.	gorunn, Random testing, transition count testing, signature analysis	anu	iest i	лиg	mg
UNIT - V		Ιa	otura	Hrs:	
	s in Sequential Circuits: Circuit Test Approach, Transition check A				
	a fault detection experiment, Machine identification, Design of fault				
experiment.	a raun detection experiment, machine identification, Design of fault	. ucu		11	
Textbooks:					
	onics and design with VHDL- Volnei A. Pedroni, Elsevier publicatio	ne			
	s of Logic Design-Charles H.Roth, Jr5th Ed., Cengage Learning.	115.			
	Theory-N.N.Biswas,PHI.				
Reference Boo					
	its and Logic Design-Samuel C.LEE, PHI, 2008.	0.1			
2. Digital Syste	m Design using programmable logic devices- Parag K.Lala, BS publi	icall	JIIS.		

Course Code	ADVANCED MICROCONTROLLERS	L	Т	Р	С
21D55101a		3	0	0	3
	Semester]	I	
Course Objectiv	/es:	3 0 0 Semester I Gocessor. opcessor. opcessor. opcessor. opcessor. opcessor. opcessor. opcessor. opcessor. opcessor type, processor opport and system level features, bity, Compatibility.			
To explo	re the architecture and instruction set of ARM processor.				
-	de a comprehensive understanding of various programs of ARM Pro	oces	sors.		
·	the programming on ARM Cortex M.				
	es (CO): Student will be able to				
• Explore off issues	the selection criteria of ARM processors by understanding the functs.	tion	al lev	vel tr	ade
• Explore	the ARM development towards the functional capabilities.				
-	to work with ASM level program using the instruction set.				
•	nd the architecture of ARM Cortex M and programming on it.				
UNIT - I	ine the aremeetare of their cortex for the programming on it.	Le	eture	Hrs	
ARM Embedde	d Systems	10	o cui e	1110.	
	osophy, ARM design philosophy, Embedded system hardware, Em	beda	led s	vsten	a
software.	······································			<i>,</i>	
ARM Processor	Fundamentals				
Registers, Currer	at Program Status Register, Pipeline, Exceptions Interrupts and Vec	tor T	able	, Cor	e
	itecture Revisions, ARM Processor Families.			,	
	ARM Processors				
Introduction to th	e architecture, Programmer's model- operation modes and states, re	egist	ers, s	speci	al
	point registers, Behaviour of the application program status register				
status flags, Q sta	atus flag, GE bits, Memory system-Memory system features, memo	ry m	ap, s	tack	-
memory, memory	y protection unit (MPU), Exceptions and Interrupts-what are except	ions	?, ne	sted	
vectored interrup	t controller(NVIC), vector table, Fault handling, System control blo	ock (SCB),	
Debug, Reset and	l reset sequence.				
UNIT - II		Lee	cture	Hrs:	
	the Arm Instruction Set				
	instructions, branch instructions, load-store instructions, software in				
	gram status register instructions, loading constants, ARMv5E extens	sions	,		
Conditional exec					
Introduction to	the Thumb Instruction Set				
Ū.	Usage, ARM-Thumb Interworking, Other Branch Instructions, Data			•	
	gle-Register Load-Store Instructions, Multiple-Register Load-Store	Insti	uctio	ons,	
	s, Software Interrupt Instruction.				
UNIT - III		Lee	cture	Hrs:	
	s of ARM Cortex M Processors				
	ion about Cortex-M3 and cortex M4 processors-Processor type, pro				
	ruction set, block diagram, memory system, interrupt and exception				
	ortex-M3 and Cortex-M4 Processors-Performance, code density, low				
	memory protection unit, interrupt handling, OS support and system		el fea	tures	,
A	fic features, Ease of use, Debug support, Scalability, Compatibility.				
UNIT - IV		Lee	cture	Hrs:	
	of ARM Cortex M				
	e instruction set in ARM Cortex-M Processors, Comparison of the			on set	. 1 n
	Processors, understanding the assembly language syntax, Use of a s				
instructions, Unit	fied assembly Language (UAL), Instruction set, Cortex-M4-specific	c ins	tructi	lons,	

M.TECH. IN EMBEDDED SYSTEMS

COURSE STRUCTURE & SYLLABI

Barrel shifter, Accessing special instructions and special registers in Programming.

UNIT - V		Lecture Hrs:
Floating Point O	perations	
About Floating Po	bint Data, Cortex-M4 Floating Point Unit (FPU)- overview, FP registered	sters overview,
CPACR register,	Floating point register bank, FPSCR, FPU->FPCCR, FPU-> FPCA	R, FPU-
>FPDSCR, FPU-2	>MVFR0, FPU->MVFR1. ARM Cortex-M4 and DSP Applications	s: DSP on a
microcontroller, I	Dot Product example, writing optimized DSP code for the CortexM	4-Biquad filter,
Fast Fourier trans	form, FIR filter.	
Textbooks:		
1. ARM System I	Developer's Guide Designing and Optimizing System Software by .	Andrew N.
SLOSS, Dominic	SYMES, Chris WRIGHT, Elsevier Publications, 2004.	
2. The Definitive	Guide to ARM Cortex-M3 and Cortex-M4 Processors by Joseph Y	iu, Elsevier
Publications, 3rdE	dition.	
Reference Books	:	
1. ARM System of	n Chip Architectures – Steve Furber, Edison Wesley, 2000.	
2 ADM Architact	ture Petersnee Manual David Seal Edison Wesley 2000	

2. ARM Architecture Reference Manual – David Seal, Edison Wesley, 2000.

Course Code	CMOS DIGITAL IC DESIGN	L	Т	Р	C
21D57102		3	0	0	3
	Semester		J	I	
Course Objectiv	'es:				
To under	stand the fundamental properties of digital Integrated circuits using	g bas	sic M	IOSF	ET
equations	s and to develop skills for various logic circuits using CMOS related	d des	sign s	styles	•
• The cour	se also involves analysis of performance metrics.				
• To teach	fundamentals of CMOS Digital integrated circuit design such a	as ir	nport	tance	of
Pseudo lo	ogic, Combinational MOS logic circuits and Sequential MOS logic	circu	iits.		
To teach	the fundamentals of Dynamic logic circuits and basic semicon	duct	or m	iemor	ies
which are	e the basics for the design of high performance digital integrated cir	cuits	5.		
Course Outcom	es (CO): Student will be able to				
Demonstr	ate advanced knowledge in Static and dynamic characteristics of C	MOS	5,		
Estimate	Delay and Power of Adders circuits.				
Classify d	ifferent semiconductor memories.				
• Analyze,	design and implement combinational and sequential MOS logic circ	cuits	•		
• Analyze	complex engineering problems critically in the domain of digit	al IO	C de	sign	for
conductin	g research.				
Solve eng	ineering problems for feasible and optimal solutions in the core are	a of	digit	al IC:	5
UNIT - I				Hrs:	
8	eudo NMOS Logic: Inverter, Inverter threshold voltage, Output hig		•		
-	age, Gain at gate threshold voltage, Transient response, Rise time, F	Fall t	ime,	Pseu	do
	es, Transistor equivalency, CMOS Inverter logic.				
UNIT - II				Hrs:	
	MOS Logic Circuits: MOS logic circuits with NMOS loads, Primi				0
	AND gate, Complex Logic circuits design-Realizing Boolean e				
	I CMOS gates, AOI and OIA gates, CMOS full adder, CMOS tra	ansm	115510	n ga	tes,
	Γransmission gates.	τ.		TT	
UNIT - III	S Logic Circuits: Behavior of bistable elements, SR Latch, Clock	-		Hrs:	
-	8		atch	and	mp
-	OS D latch and edge triggered flip-flop	Ŧ			
UNIT - IV				Hrs:	
	Circuits:Basic principle, Voltage Bootstrapping, Synchronou				
	s, Dynamic CMOS transmission gate logic, High performance	Dyn	amic	CM	05
circuits.		La		TTues	
UNIT - V	Memories: Types, RAM array organization, DRAM – Types, Op			Hrs:	
	M cell and refresh operation, SRAM operation Leakage currents				
	OR flash and NAND flash.	, 111 ,	SKA		115,
Textbooks:	OK hash and WAND hash.				
	David Harris, "CMOS VLSI Design: A Circuits and Systems	Per	snect	ive"	4^{th}
Edition, Pear	· · ·	1 013	peet	,	т
	grated Circuit Design – Ken Martin, Oxford University Press, 2011.				I
	ital Integrated Circuits Analysis and Design – Sung-Mo Kang,		uf L	ebleh	ici.
TMH, 3 rd Ed					,
Reference Book					

M.TECH. IN EMBEDDED SYSTEMS

- 1. Introduction to VLSI Systems: A Logic, Circuit and System Perspective Ming-BO Lin, CRC Press, 2011
- 2. Digital Integrated Circuits A Design Perspective, Jan M.Rabaey, AnanthaChandrakasan, Borivoje Nikolic, 2ndEdition, PHI.

21D06103a	ADVANCED COMPUTER ARCHITECTURES	L T P 3 0 0
210001034	Semester	
Course Objectiv	es:	
× *	the instruction set architectures from a design perspective, in	ncluding memo
	ig, operands, and control flow.	0
	rstand the advanced concepts such as instruction level parallelis	sm out-of-ord
	n, chip-multiprocessing and the related issues of data hazard	
	prediction.	
	the multiprocessor and parallel processing architectures.	
•	about the organization and design of contemporary processor archi	itectures
	es (CO): Student will be able to	neerures.
	ie instruction set architectures from a design perspective, in	ncluding memo
	ig, operands, and control flow.	iciuding memo
	nd the advanced concepts such as instruction level paralleli	ism out of ord
	n, chip-multiprocessing and the related issues of data hazard	
	prediction.	us, branch cos
	e multiprocessor and parallel processing architectures.	aturaa
	out the organization and design of contemporary processor architec	
UNIT - I	f Computer Design	Lecture Hrs:
Technology trend principles of com Instruction set pri	Computer design, Changing faces of computing and task of computes, Cost price and their trends, measuring and reporting performance puter design, Amdahl's law. inciples and examples- Introduction, classifying instruction set- memory performance, operations in the instruction set.	ce, quantitative
Technology trend principles of com Instruction set pri	ls, Cost price and their trends, measuring and reporting performance puter design, Amdahl's law.	ce, quantitative
Technology trend principles of com Instruction set pri type and size of c	ls, Cost price and their trends, measuring and reporting performanc puter design, Amdahl's law. inciples and examples- Introduction, classifying instruction set- me	ce, quantitative emory addressin
Technology trend principles of com Instruction set pri- type and size of co UNIT - II Pipelines Introduction ,basis stage pipe line for Reducing pipelin Memory Hierary Introduction, revi	Is, Cost price and their trends, measuring and reporting performance aputer design, Amdahl's law. inciples and examples- Introduction, classifying instruction set- me operands, operations in the instruction set. ic RISC instruction set ,Simple implementation of RISC instruction r RISC processor, Basic performance issues in pipelining , Pipeline e branch penalties.	ce, quantitative emory addressin Lecture Hrs: n set, Classic fiv e hazards,
Technology trend principles of com Instruction set pri- type and size of co UNIT - II Pipelines Introduction ,basis stage pipe line for Reducing pipelin Memory Hierar Introduction, revi- Virtual memory.	Is, Cost price and their trends, measuring and reporting performance puter design, Amdahl's law. inciples and examples- Introduction, classifying instruction set- me operands, operations in the instruction set. ic RISC instruction set ,Simple implementation of RISC instruction r RISC processor, Basic performance issues in pipelining , Pipeline e branch penalties. chy Design	ce, quantitative emory addressin Lecture Hrs: n set, Classic fiv e hazards, e miss penalty,
Technology trend principles of com Instruction set pri- type and size of co UNIT - II Pipelines Introduction ,basis stage pipe line for Reducing pipelin Memory Hierar Introduction, revi- Virtual memory. UNIT - III	Is, Cost price and their trends, measuring and reporting performance puter design, Amdahl's law. inciples and examples- Introduction, classifying instruction set- me operands, operations in the instruction set. ic RISC instruction set ,Simple implementation of RISC instruction r RISC processor, Basic performance issues in pipelining , Pipeline e branch penalties. chy Design lew of fundamentals of cache, Cache performance , Reducing cache	ce, quantitative emory addressin Lecture Hrs: n set, Classic fiv e hazards,
Technology trend principles of com Instruction set pri- type and size of con- UNIT - II Pipelines Introduction ,basis stage pipe line for Reducing pipelin Memory Hierar Introduction, revi- Virtual memory. UNIT - III Instruction Leve	Is, Cost price and their trends, measuring and reporting performance puter design, Amdahl's law. inciples and examples- Introduction, classifying instruction set- me operands, operations in the instruction set. ic RISC instruction set ,Simple implementation of RISC instruction r RISC processor, Basic performance issues in pipelining , Pipeline e branch penalties. chy Design few of fundamentals of cache, Cache performance , Reducing cache le Parallelism the Hardware Approach	ce, quantitative emory addressin Lecture Hrs: n set, Classic five hazards, e miss penalty, Lecture Hrs:
Technology trend principles of com Instruction set pri- type and size of co UNIT - II Pipelines Introduction ,basis stage pipe line fo Reducing pipelin Memory Hierary Introduction, revi- Virtual memory. UNIT - III Instruction Level Instruction-Level	Is, Cost price and their trends, measuring and reporting performance puter design, Amdahl's law. inciples and examples- Introduction, classifying instruction set- me operands, operations in the instruction set. ic RISC instruction set ,Simple implementation of RISC instruction r RISC processor, Basic performance issues in pipelining , Pipeline e branch penalties. chy Design iew of fundamentals of cache, Cache performance , Reducing cache el Parallelism the Hardware Approach parallelism, Dynamic scheduling, Dynamic scheduling using Tom	ce, quantitative emory addressin Lecture Hrs: n set, Classic five hazards, e miss penalty, Lecture Hrs: nasulo's
Technology trend principles of com Instruction set pri- type and size of con- UNIT - II Pipelines Introduction ,basis stage pipe line for Reducing pipelin Memory Hierar Introduction, revi- Virtual memory. UNIT - III Instruction Level approach, Branch	Is, Cost price and their trends, measuring and reporting performance puter design, Amdahl's law. inciples and examples- Introduction, classifying instruction set- me operands, operations in the instruction set. ic RISC instruction set ,Simple implementation of RISC instruction r RISC processor, Basic performance issues in pipelining , Pipeline e branch penalties. chy Design we of fundamentals of cache, Cache performance , Reducing cache el Parallelism the Hardware Approach parallelism, Dynamic scheduling, Dynamic scheduling using Tom a prediction, high performance instruction delivery- hardware based	ce, quantitative emory addressin Lecture Hrs: n set, Classic five hazards, e miss penalty, Lecture Hrs: nasulo's
Technology trend principles of com Instruction set pri- type and size of co UNIT - II Pipelines Introduction ,basis stage pipe line for Reducing pipelin Memory Hierar Introduction, revi- Virtual memory. UNIT - III Instruction Level approach, Branch ILP Software A	Is, Cost price and their trends, measuring and reporting performance puter design, Amdahl's law. inciples and examples- Introduction, classifying instruction set- me operands, operations in the instruction set. ic RISC instruction set ,Simple implementation of RISC instruction r RISC processor, Basic performance issues in pipelining , Pipeline e branch penalties. chy Design lew of fundamentals of cache, Cache performance , Reducing cache e Parallelism the Hardware Approach parallelism, Dynamic scheduling, Dynamic scheduling using Tom a prediction, high performance instruction delivery- hardware based pproach	ce, quantitative emory addressin Lecture Hrs: n set, Classic five hazards, e miss penalty, Lecture Hrs: nasulo's d speculation.
Technology trend principles of com Instruction set pri- type and size of co- UNIT - II Pipelines Introduction ,basis stage pipe line for Reducing pipelin Memory Hierary Introduction, revi- Virtual memory. UNIT - III Instruction Level approach, Branch ILP Software A Basic compiler let	Is, Cost price and their trends, measuring and reporting performance puter design, Amdahl's law. inciples and examples- Introduction, classifying instruction set- me operands, operations in the instruction set. ic RISC instruction set ,Simple implementation of RISC instruction r RISC processor, Basic performance issues in pipelining , Pipeline e branch penalties. chy Design iew of fundamentals of cache, Cache performance , Reducing cache parallelism the Hardware Approach parallelism, Dynamic scheduling, Dynamic scheduling using Tom a prediction, high performance instruction delivery- hardware based pproach evel techniques, static branch prediction, VLIW approach, Exploitin	ce, quantitative emory addressin Lecture Hrs: n set, Classic five hazards, e miss penalty, Lecture Hrs: nasulo's d speculation.
Technology trend principles of com Instruction set pri- type and size of co UNIT - II Pipelines Introduction ,basis stage pipe line fo Reducing pipelin Memory Hierary Introduction, revi- Virtual memory. UNIT - III Instruction Level approach, Branch ILP Software Aj Basic compiler le Parallelism at con	Is, Cost price and their trends, measuring and reporting performance puter design, Amdahl's law. inciples and examples- Introduction, classifying instruction set- me operands, operations in the instruction set. ic RISC instruction set ,Simple implementation of RISC instruction r RISC processor, Basic performance issues in pipelining , Pipeline e branch penalties. chy Design lew of fundamentals of cache, Cache performance , Reducing cache e Parallelism the Hardware Approach parallelism, Dynamic scheduling, Dynamic scheduling using Tom a prediction, high performance instruction delivery- hardware based pproach	ce, quantitative emory addressin Lecture Hrs: n set, Classic five hazards, e miss penalty, Lecture Hrs: nasulo's d speculation. ng ILP,
Technology trend principles of com Instruction set pri- type and size of co UNIT - II Pipelines Introduction ,basis stage pipe line fo Reducing pipelin Memory Hierar Introduction, revi- Virtual memory. UNIT - III Instruction Level approach, Branch ILP Software Ap Basic compiler le Parallelism at con UNIT - IV	Is, Cost price and their trends, measuring and reporting performance puter design, Amdahl's law. inciples and examples- Introduction, classifying instruction set- me operands, operations in the instruction set. ic RISC instruction set ,Simple implementation of RISC instruction r RISC processor, Basic performance issues in pipelining , Pipeline e branch penalties. chy Design we of fundamentals of cache, Cache performance , Reducing cache el Parallelism the Hardware Approach parallelism, Dynamic scheduling, Dynamic scheduling using Tom a prediction, high performance instruction delivery- hardware based pproach evel techniques, static branch prediction, VLIW approach, Exploitin mpile time, Cross cutting issues -Hardware verses Software.	ce, quantitative emory addressin Lecture Hrs: n set, Classic five hazards, e miss penalty, Lecture Hrs: nasulo's d speculation.
Technology trend principles of com Instruction set pri- type and size of con- UNIT - II Pipelines Introduction ,basis stage pipe line for Reducing pipelin Memory Hierar Introduction, revi- Virtual memory. UNIT - III Instruction Level approach, Branch ILP Software AJ Basic compiler le Parallelism at con- UNIT - IV Multi Processor	Is, Cost price and their trends, measuring and reporting performance puter design, Amdahl's law. inciples and examples- Introduction, classifying instruction set- me perands, operations in the instruction set. ic RISC instruction set ,Simple implementation of RISC instruction r RISC processor, Basic performance issues in pipelining , Pipeline e branch penalties. chy Design Tew of fundamentals of cache, Cache performance , Reducing cache e Parallelism the Hardware Approach parallelism, Dynamic scheduling, Dynamic scheduling using Toma a prediction, high performance instruction delivery- hardware based proach evel techniques, static branch prediction, VLIW approach, Exploitin mpile time, Cross cutting issues -Hardware verses Software. s and Thread Level Parallelism	ce, quantitative emory addressin Lecture Hrs: n set, Classic five hazards, e miss penalty, Lecture Hrs: nasulo's d speculation. ng ILP, Lecture Hrs:
Technology trend principles of com Instruction set pri- type and size of co UNIT - II Pipelines Introduction ,basis stage pipe line fo Reducing pipelin Memory Hierar Introduction, revi- Virtual memory. UNIT - III Instruction Level approach, Branch ILP Software AJ Basic compiler le Parallelism at con UNIT - IV Multi Processors Multi Processors	Is, Cost price and their trends, measuring and reporting performance puter design, Amdahl's law. inciples and examples- Introduction, classifying instruction set- me perands, operations in the instruction set. ic RISC instruction set ,Simple implementation of RISC instruction r RISC processor, Basic performance issues in pipelining , Pipeline e branch penalties. chy Design Tew of fundamentals of cache, Cache performance , Reducing cache el Parallelism the Hardware Approach parallelism, Dynamic scheduling, Dynamic scheduling using Toma n prediction, high performance instruction delivery- hardware based proach wel techniques, static branch prediction, VLIW approach, Exploitin mpile time, Cross cutting issues -Hardware verses Software. s and Thread Level Parallelism and Thread level Parallelism- Introduction, Characteristics of appl	ce, quantitative emory addressin Lecture Hrs: n set, Classic five hazards, e miss penalty, Lecture Hrs: nasulo's d speculation. ng ILP, Lecture Hrs: ication domain,
Technology trend principles of com Instruction set pri- type and size of con- UNIT - II Pipelines Introduction ,basis stage pipe line for Reducing pipelin Memory Hierary Introduction, revi- Virtual memory. UNIT - III Instruction Level approach, Branch ILP Software A Basic compiler le Parallelism at con- UNIT - IV Multi Processors Systematic shared	Is, Cost price and their trends, measuring and reporting performance puter design, Amdahl's law. inciples and examples- Introduction, classifying instruction set- me perands, operations in the instruction set. ic RISC instruction set ,Simple implementation of RISC instruction r RISC processor, Basic performance issues in pipelining , Pipeline e branch penalties. chy Design Tew of fundamentals of cache, Cache performance , Reducing cache e Parallelism the Hardware Approach parallelism, Dynamic scheduling, Dynamic scheduling using Toma a prediction, high performance instruction delivery- hardware based proach evel techniques, static branch prediction, VLIW approach, Exploitin mpile time, Cross cutting issues -Hardware verses Software. s and Thread Level Parallelism	ce, quantitative emory addressin Lecture Hrs: n set, Classic five hazards, e miss penalty, Lecture Hrs: nasulo's d speculation. ng ILP, Lecture Hrs: ication domain, Synchronization
Technology trend principles of com Instruction set pri- type and size of con- UNIT - II Pipelines Introduction ,basis stage pipe line for Reducing pipelin Memory Hierar Introduction, revi- Virtual memory. UNIT - III Instruction Level approach, Branch ILP Software A Basic compiler le <u>Parallelism at con</u> UNIT - IV Multi Processors Multi Processors	Is, Cost price and their trends, measuring and reporting performance puter design, Amdahl's law. inciples and examples- Introduction, classifying instruction set- me operands, operations in the instruction set. ic RISC instruction set ,Simple implementation of RISC instruction r RISC processor, Basic performance issues in pipelining , Pipeline e branch penalties. chy Design lew of fundamentals of cache, Cache performance , Reducing cache et Parallelism the Hardware Approach parallelism, Dynamic scheduling, Dynamic scheduling using Tom a prediction, high performance instruction delivery- hardware based pproach wel techniques, static branch prediction, VLIW approach, Exploitin npile time, Cross cutting issues -Hardware verses Software. s and Thread Level Parallelism and Thread level Parallelism- Introduction, Characteristics of appl d memory architecture, Distributed shared – memory architecture, S	ce, quantitative emory addressin Lecture Hrs: n set, Classic five hazards, e miss penalty, Lecture Hrs: nasulo's d speculation. ng ILP, Lecture Hrs: ication domain,

M.TECH. IN EMBEDDED SYSTEMS

COURSE STRUCTURE & SYLLABI

Introduction, Interconnection network media, Practical issues in interconnecting networks, Examples of inter connection, Cluster, Designing of clusters.

Intel Architecture

Intel IA- 64 ILP in embedded and mobile markets Fallacies and pit falls.

Textbooks:

1. John L. Hennessy, David A. Patterson, Computer Architecture: A Quantitative Approach, 3rd Edition, An Imprint of Elsevier.

Reference Books:

1. John P. Shen and Miikko H. Lipasti, Modern Processor Design : Fundamentals of Super Scalar Processors

2. Computer Architecture and Parallel Processing ,Kai Hwang, Faye A.Brigs., MC Graw Hill.,

3. Advanced Computer Architecture - A Design Space Approach, DezsoSima, Terence Fountain, Peter Kacsuk ,Pearson Ed.,

Course Code EMBE	DDED REAL TIME OPERATING SYSTEMS	L	Т	Р	С
21D06203c		3	0	0	3
	Semester]	[
Course Objectives:					
-	tanding of the requirements of Real Time Operating System				
• To make the student und	erstand, applications of these Real Time features using	case	studi	ies.	
• To use the real time oper	ating system concepts.				
Course Outcomes (CO): St	udent will be able to				
• Acquire knowledge on R	eal Time features of UNIX and LINUX.				
• Understand the basic bu	ilding blocks of Real Time Operating Systems in terr	ns of	f sch	eduli	ing,
context switching and IS	R.				
• Understand on Real Tir	ne applications using Real Time Linux, ucos2, VX v	vork	s, En	nbed	ded
Linux.					
UNIT - I		Leo	cture	Hrs:	
Introduction					
Introduction to UNIX/LINU	X, Overview of Commands, File I/O,(open, create, clos	se, ls	eek, 1	read,	
write), Process Control (fork	x, vfork, exit, wait, waitpid, exec).				
UNIT - II		Lee	cture	Hrs:	
Real Time Operating Syste					
-	g RTOS, The Scheduler, Objects, Services, Characterist			OS,	
	and Scheduling, Task Operations, Structure, Synchroniz	zatio	n,		
Communication and Concurr	•				
U	tions and Use, Defining Message Queue, States, Conten	nt, S	torag	e,	
Operations and Use.		1			
UNIT - III		Lee	cture	Hrs:	
Objects, Services and I/O					
	als, Other Building Blocks, Component Configuration, I	Basic	: I/O		
Concepts, I/O Subsystem.		-			
UNIT - IV		Lee	cture	Hrs:	
Exceptions, Interrupts and		_			
	cations, Processing of Exceptions and Spurious Interrup				;
	rs, Timer Interrupt Service Routines (ISR), Soft Timers	-			
UNIT - V		Leo	cture	Hrs:	
Case Studies of RTOS					
	x Works, Embedded Linux, and Tiny OS.				
Textbooks:					
*	for Embedded Systems – Qing Li, Elsevier, 2011.				
Reference Books:					
-	itecture, Programming and Design by Rajkamal, TMH, 2	2007	•		
2. Advanced UNIX Program					
3. Embedded Linux: Hardwa	re, Software and Interfacing – Dr. Craig Hollabaugh.				

M.TECH. IN EMBEDDED SYSTEMS

Course Code	ADVANCED COMPUTER NETWORKS	L	Т	P	С
21D55102a		3	0	0	3
	Semester]	[
<u> </u>					
Course Objectiv					
	d various protocols in computer networks				
	ut congestion control and quality of service in computer networks				
•	ious aspects of adhoc wireless networks				
• To study var	ious aspects of wireless sensor networks				
Course Outcom	es (CO): Student will be able to				
• Understand v	various protocols in computer networks				
• Learn about	congestion control and quality of service in computer networks				
	s aspects of adhoc wireless networks				
Study variou	s aspects of wireless sensor networks				
UNIT - I		Lee	cture	Hrs:	
Wireless LANs					
	mparison, Characteristics, Access Control, IEEE 802.11 Project: An				
	ressing Mechanism, Physical Layer, Bluetooth Architecture, B				
	K Services, IEEE Project 802.16, Cellular Telephony: operation,	1G,2	G,30	G,4G,	5G
	ks, GEO, MEO and LEO Satellites				
UNIT - II		Lee	cture	Hrs:	
	trol and Quality of Service				
	ngestion, Congestion Control, Quality of Service, Techniques to Im			рS,	
	es, Differentiated Services, QoS in Switched Networks, Queue Man				
	al, Drop front, Random drop, Active- early Random drop, Random		•		n.
UNIT - III		Lee	cture	Hrs:	
	CLESS NETWORKS				
	llular and Ad hoc Wireless Networks, Application of Ad Hoc Wi				
	be Wireless Networks, Medium Access Scheme, Routing, Multic		0	-	
	, Pricing Scheme, Quality of Service Provisioning, Self-Organi				
Ū.	Service Discovery, Energy Management, Scalability, Deploymen	t Co	nsia	eratic	ms,
Ad Hoc Wireless		T.a.	cture	I Luca	
UNIT - IV	as in Ad Has Winslag Naturaliz	Lee	clure	HIS:	
	ce in Ad Hoc Wireless Networks	noto	ra in	1 J J	Joo
	al Time Traffic Support in Ad Hoc Wireless Networks, QoS Parar				
	rk, Issues and Challenges in providing QoS in Ad Hoc With QoS Solutions: MAC Layer Solutions, Cluster TDMA, IEEE 8				
	Solutions, QoS Routing Protocols, Ticket Based QoS Routing Pro				
	QoS routing protocol, Trigger Based Distributed QoS Routing The				
	Routing Protocol, Bandwidth QoS Routing Protocol, On Dema	•			_
	mand Link-State Multipath QoS Routing Protocol, Asynchronou		-		0
	Frameworks for Ad Hoc Wireless Networks.	5 51		u	
UNIT - V		Lee	cture	Hrs:	
Wireless Sensor	Networks	200			
	plication of Sensor Network, Comparison with Ad hoc Wireless I	Netw	orks	. Iss	ues
	n Designing a Sensor Network, Sensor Network Architecture, La				

M.TECH. IN EMBEDDED SYSTEMS COURSE STRUCTURE & SYLLABI

Cluster Architecture, Data Dissemination Flooding, Gossiping, Rumor Routing, Sequential Assignment Routing, Direct Diffusion, Sensor Protocols for Information via Negotiation, Cost-Field Approach, Geography Hash Table, Small Minimum Energy Communication Network, Data Gathering, Direct Transmission, Power Efficient Gathering for Sensor Information Systems, Binary Scheme, Chain Based Three-Level Scheme.

Textbooks:

1.Ad Hoc Wireless Networks: Architectures and Protocols - C. Siva Ram Murthy and B.S.Manoj, 2004, PHI

2. Data Communications and Networking - B. A.Forouzan, 5th , 2013, TMH.

Reference Books:

1.Data Communications and Computer Networks - Prakash C. Gupta, 2006, PHI. 2.Data and Computer Communications - William Stallings, 8th ed., 2007, PHI.

M.TECH. IN EMBEDDED SYSTEMS

Course Code	SoC ARCHITECTURE	L	Т	Р	С
21D06203a		3	0	0	3
	Semester		I		
Course Object	ives:				
To und	erstand the basics related to SoC architecture and different approach	hes r	elated	l to S	oC
Design					
To sele	ct an appropriate robust processor for SoC Design				
To sele	ct an appropriate memory for SoC Design.				
	ize real time case studies				
Course Outcon	nes (CO): Student will be able to				
	tand the basics related to SoC architecture and different approach	nes re	lated	to S	oC
Design					
Ũ	an appropriated robust processor for SoC Design				
	an appropriate memory for SoC Design.				
	real time case studies				
UNIT - I		Lec	ture H	Irs:	
	the System Approach: System Architecture, Components of the sys				
	rocessor Architectures, Memory & Addressing. System level interc				
	SOC Design, System Architecture and Complexity.			/	
UNIT - II		Lec	ture H	Irs:	
Processors: Intr	oduction, Processor Selection for SOC, Basic concepts in Processo	or Ar	chited	cture	,
	s in Processor Microarchitecture, Basic elements in Instruction han				
	peline Delays, Branches, More Robust Processors, Vector Pro				
Vector Instru	ction extensions, VLIW Processors, Superscalar Processors				
UNIT - III		Lec	ture H	Hrs:	
Memory Design	for SOC: Overview: SOC external memory, SOC Internal Memory	y, Siz	ze,		
Scratchpads an	nd Cache memory, Cache Organization, Cache data, Write Policies	s, Str	ategie	es foi	c
line replaceme	ent at miss time, Other Types of Cache, Split – I, and D – Caches, I	Multi	level		
Caches, SOC	Memory System, Models of Simple Processor – memory interaction	n.			
UNIT - IV			ture I	Irs:	
Interconnect, C	ustomization and Configurability: Interconnect Architectures, Bus: I	Basic			
Architectures, S	SOC Standard Buses, Analytic Bus Models, Using the Bus model,	Effe	cts of	f Bus	6
	d contention time.				
	ization: An overview, Customizing Instruction Processor,				
	Mapping design onto Reconfigurable devices, Instance-				
	Soft Processor, Reconfiguration - overhead analysis and trade	-off	analy	/sis	on
reconfigurable	Parallelism.				
UNIT - V			ture I		
	dies / Case Studies: SOC Design approach; AES-algorithms, Design	and	evalu	ation	n;
×	ssion–JPEG compression.				
Textbooks:					
· · ·	ystem Design System-on-Chip - Michael J. Flynn and Wayne Luk	, Wie	ely In	dia I	Pvt.
Ltd.					
-	em on Chip Architecture – Steve Furber, 2ndEdition, 2000,	Add	ison	Wes	ley
Professional					
Reference Boo	ks:				

M.TECH. IN EMBEDDED SYSTEMS COURSE STRUCTURE & SYLLABI

 Design of System on a Chip: Devices and Components – Ricardo Reis, 1st Ed., 2004, Springer
 Co-Verification of Hardware and Software for ARM System on Chip Design (EmbeddedTechnology) – Jason Andrews – Newnes, BK and CDROM.
 System on Chip Verification – Methodologies and Techniques –PrakashRashinkar, PeterPaterson and Leena Singh L, 2001, Kluwer Academic Publishers

M.TECH. IN EMBEDDED SYSTEMS

Course	Code	DIGITAL SYSTEM DESIGN LAB	L	Т	Р	С
21D06	6105		0	0	4	2
		Semester			I	
Course (
		iarize the HDL simulator / synthesis tool				
		n and implement given combinational circuit on FPGA device				
		n and implement given sequential circuit on FPGA device				
Course (
• F	Familiari	ze the HDL simulator / synthesis tool				
• [Design a	nd implement given combinational circuit on FPGA device				
• [Design a	nd implement given sequential circuit on FPGA device				
List of E	xperim	ents:				
		sign his/her user defined library components by using and stand	lard 1	HDL	simul	ator
		or target FPGA device.				
		Logic Circuits				
		Multiplexer.				
		Priority Encoder.				
		f RAM Memory.				
d. (Code Co	nverters.				
e. (Combina	tional Arithmetic circuits				
f. F	Ripple C	arry Adder.				
g. (Carry-Lo	ook ahead adder.				
h. S	Signed a	nd Unsigned Adders.				
		nd Unsigned Subtractors.				
		mparator.				
		rithmetic Logic Unit.				
		Signed and unsigned Multipliers.				
	Dividers					
2. Sequer						
		gister with Load.				
		Debouncer.				
	limer.					
		i Series Generator.				
		cy Meters.				
Software Viling Vi			10.5			
		ntel Quartus Prime Pro, Lattice Diamond, equivalent EDA software	vare			
		irements: Lattice / Equivalent FPGA development kits				
$\Delta \min X / F$		Laure / Equivalent Fr OA development Kits				

Course Code	MICROCONTROLLERS AND PROGRAMMABLE	L	Τ	Р	С
21D06106	DIGITAL SIGNAL PROCESSORS LAB	0	0	4	2
	Semester	Ι			
Course Object	ives.				
	e the ARM 'C' programming for applications				
	erstand the interfacing of various modules with ARM 7/ ARM Co	ortev.	МЗ		
	elop assembly and C Programming for DSP processors	лил	-1015		
Course Outcor	· · · · · ·				
Install, core.Design	configure and utilize tool sets for developing applications based of and developtheARM7 based embedded systems for various appli	catio	ons.		
• Develo C.	p application programs on ARM and DSP development boards be	oth in	asse	mbly	and
• Design	and Implement the digital filters on DSP6713 processor.				
Analyz	e the hardware and software interaction and integration.				
List of Experir	nents: ments to be carried out on Cortex-Mx development boards and us				
 System clock Control inten Control an Li every five switce UART Echo Take analog : Temperature Mimic light i Evaluate the System rese Sample sou Part B) Experind Studio (CCS) To develop points To develop To develop To develop To develop 	A	h the C cha f an I es. Code veen exec	nnel. LED. Com any t ution	poser wo	
Hardware Req	Code Composer Studio				

M.TECH. IN EMBEDDED SYSTEMS

Course Code	RESEARCH METHODOLOGY AND IPR	L	Т	Р	С
21DRM101		2	0	0	2
	Semester	•		Ι	
Course Object					
	an appropriate research problem in their interesting domain.				
	tand ethical issues understand the Preparation of a research project	hesis rep	ort.		
	tand the Preparation of a research project thesis report				
	tand the law of patent and copyrights.				
	tand the Adequate knowledge on IPR				
	nes (CO): Student will be able to				
	e research related information research ethics				
	tand that today's world is controlled by Computer, Information 7	achnolo	av but	tom	orrou
	vill be ruled by ideas, concept, and creativity.	eciliolo	gy, Dui	tom	orrow
	tanding that when IPR would take such important place in growth of	f individ	luale &	natio	n it ia
	is to emphasis the need of information about Intellectual Property I				
	s in general & engineering in particular.	digiti to t	be prom		linong
	tand that IPR protection provides an incentive to inventors for	further	researc	h wor	k and
	hent in R & D, which leads to creation of new and better product				
	nic growth and social benefits.	~,		8	
UNIT - I	Lecture Hi	s:			
Meaning of re	search problem, Sources of research problem, Criteria Character	eristics of	of a go	od res	search
	s in selecting a research problem, scope, and objectives of research				
	of solutions for research problem, data collection, analysis,				
instrumentation		ľ		-	2
UNIT - II	Lecture Hi	s:			
Effective literat	ture studies approaches, analysis Plagiarism, Research ethics, Effe	ctive tec	hnical	writing	, how
to write report	, Paper Developing a Research Proposal, Format of research p	oposal,	a pres	entatio	n and
	a review committee.				
UNIT - III	Lecture Hr				
	ectual Property: Patents, Designs, Trade and Copyright. Process of				
	esearch, innovation, patenting, development. International Scenari	o: Intern	ational	coope	ration
	Property. Procedure for grants of patents, Patenting under PCT.				
UNIT - IV	Lecture Hi				
	Scope of Patent Rights. Licensing and transfer of technology. Paten	t informa	ation ar	nd data	bases
Geographical In	idications.				
UNIT - V					
	nents in IPR: Administration of Patent System. New development		; IPR o	of Biol	ogica
	uter Software etc. Traditional knowledge Case Studies, IPR and IIT	s.			
Textbooks:					
	rt Melville and Wayne Goddard, "Research methodology: an	introduct	tion fo	r scier	ice &
Ų	ering students"				
	ne Goddard and Stuart Melville, "Research Methodology: An Introd	luction"			
Reference Boo					
	njit Kumar, 2nd Edition, "Research Methodology: A Step by Step G	uide for			
	ginners"				
	lbert, "Resisting Intellectual Property", Taylor & amp; Francis Ltd, 2	2007.			
	yall, "Industrial Design", McGraw Hill, 1992.				
4. Nie	ebel, "Product Design", McGraw Hill, 1974.				

- 5. Asimov, "Introduction to Design", Prentice Hall, 1962.
- 6. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New
- 7. Technological Age", 2016.

M.TECH. IN EMBEDDED SYSTEMS

Course Code 21D06201	EMBEDDED SYSTEMS DESIGN	L 3	Т 0	P 0	C 3
21D00201	Semester	3	-	I I	3
	Semester		1	.1	
Course Objectiv	es:				
*	entiate between a General purpose and an Embedded System.				
	de knowledge on the building blocks of Embedded System.				
•	stand the requirement of Embedded firmware and its role in API.				
	es (CO): Student will be able to				
	to differentiate the design requirements between General Purpos	se ar	d Er	nbed	ded
Systems.	· · ·	se un		nocu	aea
•	to acquire the knowledge of firmware design principles.				
	to understand the role of Real Time Operating System in Embedd	ed D	esigr	۱.	
	re the knowledge and experience of task level Communication i				ded
System.			5 21		
UNIT - I		Leo	cture	Hrs:	
	mbedded Systems: Definition of Embedded System, Embedded Sy				eral
	ms, History of Embedded Systems, Classification, Major Application				
Purpose of Embe					
Characteristics an	nd Quality Attributes of Embedded Systems.				
UNIT - II				Hrs:	
	ed System: Core of the Embedded System: General Purpose and De				
	Cs, PLDs, Commercial Off-The-Shelf Components (COTS), Memo				
	ng to the type of Interface, Memory Shadowing, Memory selection				
	and Actuators, Communication Interface: Onboard and External C	Comr	nunio	catio	1
	, Flash, NVRAM				
UNIT - III				Hrs:	1
	vare: Reset Circuit, Brown-out Protection Circuit, Oscillator Unit, J			e Clo	ck,
	Embedded Firmware Design Approaches and Development Lang			TT	
UNIT - IV	 hadded Sustan Decient Organiza Sustan Decies Times of Organi			Hrs:	
	bedded System Design: Operating System Basics, Types of Operat ad Threads, Multiprocessing and Multitasking, Task Scheduling.	ing :	syste	ms,	
UNIT - V		T		TT	
	ation: Shared Memory, Message Passing, Remote Procedure Call a			Hrs:	alr
	Task Communication/Synchronization Issues, Task Synchronizati				
•	How to Choose an RTOS.		eemi	iques	,
Textbooks:	Tow to choose an K105.				
	ion to Embedded Systems - Shibu K.V, Mc Graw Hill.				
Reference Book	•				
	s: 2d Systems - Raj Kamal, TMH.				
	ed System Design - Frank Vahid, Tony Givargis, John Wiley.				
	ed Systems – Lyla, Pearson, 2013				
	edded Software Primer - David E. Simon, Pearson Education.				
T. All Lillo	adea Sortware i finier - Davia E. Sinion, i carson Education.				

Course Code	EMBEDDED PROGRAMMING	L	Т	Р	C
21D55201	EMBEDDEDTROOKAIMMINO	3	0	0	3
21055201	Semester	5	I		5
	Semester			1	
Course Objectiv	765+				
· · · · · ·		o ond	I Em	body	dad
▲ ▲	the difference between general purpose programming languages	s and	I EII	ibeat	lea
Programming					
•	ase studies for programming in Embedded systems.				
	es (CO): Student will be able to				
	e basics of Embedded C with reference to 8051.				
	nd how to handle control and data pins at hardware level.				
	e objective nature of Embedded C.				
	nd the specifications of real time embedded programming with case				
UNIT - I			ture]		
	NG EMBEDDED SYSTEMS IN C: Introduction to embedded s			oces	sor
	ng language used, operating system used, developing embedded so				
	G THE 8051 MICROCONTROLLER FAMILY: Introduction	,			
	Standard 8051, Reset requirements, Clock frequency and performed	orman	ice N	Лет	ory
	Timers, Interrupts, Serial interface, Power consumption.				
UNIT - II			ture]		
	WORLD: Introduction Installing the Keil software and load	•			
	simulator, Building the target, Running the simulation, Dissect	ing t	he p	rogra	ım,
Building the hard	lware.				
UNIT - III			ture 1		
	ITCHES: Introduction, Basic techniques for reading from por	-		-	
Ū.	ting bytes, Example: Reading and writing bits (simple version), The		d for	pull	-up
	with switch bounce, Example: Reading switch inputs (basic code)	•			
UNIT - IV			ture]		
	JCTURE TO YOUR CODE: Introduction, Object-oriented prog		•		
	der (MAIN.H), The Port Header (PORT.H), Example: Restruct	turing	g the	'He	ello
Embedded World					
	AL-TIME CONSTRAINTS: Introduction, Creating 'hardware del				
	ample: Generating a precise 50 ms delay, Example: Creating a p	ortab	ole ha	ardw	are
delay, The need t	for 'timeout' mechanisms, Creating loop timeouts.				
UNIT - V		Lec	ture]	Hrs:	
CREATING A	N EMBEDDED OPERATING SYSTEM: Introduction, The b	oasis	of a	sim	ple
embedded OS, I	ntroducing sEOS, Using Timer 0 or Timer 1, alternative archite	cture	s, in	iport	ant
design considerat	tions when using sEOS.				
MULTI-STATE	SYSTEMS AND FUNCTION SEQUENCES: Introduction,	Impl	eme	nting	g a
Multi-State (Tim	ed) system, traffic light sequencing, Animatronics dinosaur, imple	ement	ing a	ı Mu	lti-
State (Input/Time	ed) system, Controller for a washing machine				
Textbooks:					
1. Embedde	ed C By Micheal J. Pont Pearson Education, 2002.				
2. Embedde	ed C Coding standard-Michael Barr from Neutrino.				
Reference Book	s:				
	e Concepts for Embedded systems-Qing Li, Caroline Yao, CMP Bo	ooks 2	2003		
	ed/Real Time Svatems-KVKK Prasad, Dreamtech press, 2005				

M.TECH. IN EMBEDDED SYSTEMS

Course Code	SENSORS AND ACTUATORS	L	Т	Р	C
21D55202a	SLIGONS MID ACTUMONS	3	0	0	3
210002020	Semester	5	I	÷	
	bemester		-	L	
Course Objectiv	765:				
	a about Electro mechanical sensors.				
	the use of the thermal sensors and magnetic sensors for embedded	evet	em		
	the basics of radiation sensors, smart sensors and actuators.	syst	ciii.		
	es (CO): Student will be able to				
	out Electro mechanical sensors.				
	e use of the thermal sensors and magnetic sensors for embedded sys	tom			
	e basics of radiation sensors, smart sensors and actuators.	stem.			
• Learn the UNIT - I		La	ture	ILman	
Sensors/Transdo		Let	luie	піз.	
		r a (E	D)		
Characterization.	sification – Parameters – Characteristics - Environmental Paramete	18 (E	r)-		
	Electromechanical Sensors				
	esistive Potentiometer – Strain Gauge – Resistance Strain Gauge – R	Semi	cond	luctor	r
	iductive Sensors: Sensitivity and Linearity of the Sensor – Types-C			uctor	•
	ostatic Transducer– Force/Stress Sensors Using Quartz Resonators			nic	
Sensors.		en	1000	ne	
UNIT - II		Leo	ture	Hrs:	
Thermal Sensor	S	200	i ui c	1110.	
	as thermometric Sensors – Thermal Expansion Type Thermometric	Sen	sors -	_	
	ature Sensor – Dielectric Constant and Refractive Index thermosen				
-	e Thermometer – Nuclear Thermometer – Magnetic Thermometer -				
	ermometric Sensors – Thermoemf Sensors– Junction Semiconducto				
	on Sensors –Quartz Crystal Thermoelectric Sensors – NQR Thermo				
	hermometry – Noise Thermometry – Heat Flux Sensors.		•		
Magnetic sensor	'S				
Introduction – Se	ensors and the Principles Behind – Magneto-resistive Sensors – Ani	sotro	pic		
Magnetoresistive	Sensing - Semiconductor Magnetoresistors- Hall Effect and Sense	ors –	Indu	ctand	ce
and Eddy Curren	t Sensors- Angular/Rotary Movement Transducers - Synchros - Synchros	ynch	ro-re	solve	rs
- Eddy Current S	ensors - Electromagnetic Flowmeter - Switching Magnetic Sensor	s SQ	UID		
Sensors.	1				
UNIT - III		Lec	ture	Hrs:	
Radiation Senso					
	asic Characteristics – Types of Photosensistors/Photo detectors– X-	ray a	ind N	uclea	ar
	s– Fiber Optic Sensors.				
Electro analytic					-
	ne Electrochemical Cell – The Cell Potential - Standard Hydrogen I				£)
-	n and Other Potentials – Polarization – Concentration Polarization-	- Ref	eren	ce	
	sor Electrodes – Electro ceramics in Gas Media.	Ŧ			
UNIT - IV		Lec	ture	Hrs:	
Smart Sensors	iman Sanson Excitation Amelification Filters Consector	Cr			
	imary Sensors – Excitation – Amplification – Filters – Converters -		-		
Automation Cod	ing/Processing - Data Communication – Standards for Smart Senso	1 1110		z — 1	ne
Automation.					

M.TECH. IN EMBEDDED SYSTEMS

COURSE STRUCTURE & SYLLABI

Sensors – **Applications**

Introduction – On	-board Automobile Sensors (Automotive Sensors)- Home Applian	nce Sensors –
Aerospace Sensor	s — Sensors for Manufacturing –Sensors for environmental Monit	toring.
UNIT - V		Lecture Hrs:

Actuators

Pneumatic and Hydraulic Actuation Systems- Actuation systems – Pneumatic and hydraulic systems – Directional Control valves – Presure control valves – Cylinders - Servo and proportional control valves – Process control valves – Rotary actuators.

Mechanical Actuation Systems- Types of motion – Kinematic chains – Cams – Gears – Ratchet and pawl – Belt and chain drives – Bearings – Mechanical aspects of motor selection.

Electrical Actuation Systems-Electrical systems -Mechanical switches – Solid-state switches Solenoids – D.C. Motors – A.C. motors – Stepper motors.

Textbooks:

1.D. Patranabis, "Sensors and Transducers", PHI Learning Private Limited. 2. W. Bolton, "Mechatronics", Pearson Education Limited.

Reference Books:

1. Ernest O.Doebelin, Measurement Systems - Application & Design,4th Edition,Mc-GrawHill Publishing company

2. C. Rangan, G Sarma, V.S.V. Mani Instrumentation: Devices and Systems,4th Edition,Mc-GrawHill Publishing company

Course Code	MODERN CONTROL THEORY	L	Т	Р	C
21D55202b	MODERN CONTROL IIIEORI	3	0	0	3
21D552020	Somestor	3	I	-	5
	Semester	L		1	
Comme Obio dia					
Course Objective				· 1	1
	tand concepts of modern control system To explain the concepts	of st	tate v	/ar1at	bles
analysis.					
-	nd analyze non linear control systems.				
-	e the concept of stability for nonlinear control systems and their ca	-	orizat	ion.	
	he comprehensive knowledge of optimal theory for Control Syster	ms.			
	s (CO): Student will be able to				
Understan	d concepts of modern control system To explain the concepts	of st	ate v	variał	oles
analysis.					
Study and	analyze non linear control systems.				
Analyze th	ne concept of stability for nonlinear control systems and their cate	goriz	zatior	1.	
	comprehensive knowledge of optimal theory for Control Systems				
UNIT - I			cture	Hrs:	
Mathematical Pro	eliminaries and State Variable Analysis				
	d Vector Spaces – Linear combinations and Bases – Linear Transf	orm	ation	s and	l
	Product and Norms – Eigen values, Eigen Vectors and a Canonica				-
	inear systems – The concept of state – State space model of Dyna			ems -	_
	nd Linearity – Non uniqueness of state model – State diagrams for				
	- Existence and Uniqueness of Solutions to Continuous-Time Sta				_
	r Time Invariant Continuous-Time State Equations – State transiti				
	nplete solution of state space model due to zero input and due to z				
UNIT - II			cture		
Controllability ar	nd Observability				
	f controllability – Controllability tests, different state transformation	ons s	such	as	
	rdon canonical forms and Controllability canonical forms for Co				3
	- General concept of Observability - Observability tests for Cont				
	– Observability of different State transformation forms.				
UNIT - III	2	Leo	cture	Hrs:	
	ontrollers and Observers				
	troller design through Pole Assignment, using Ackkermans formu	ıla–	State	;	
	ler and Reduced order observers.				
UNIT - IV		Leo	cture	Hrs:	
Non-Linear Syste	ms				
	Linear Systems - Types of Non-Linearities – Saturation – Dead-	-Zon	e - F	Backl	ash
	on etc; Linearization of nonlinear systems, Singular Points and its				
	n-describing function of different types of nonlinear elements, - S			analy	sis
Ū.	tems through describing functions. Introduction to phase-plane an		•	•	
	tructing Trajectories, Stability analysis of nonlinear systems based				
method.				1	
UNIT - V		Leo	cture	Hrs:	
Stability Analysis					
• •	se of Lyapunov, Lyapunov's stability and Lypanov's instability th	ieore	ems -		
	of the Linear continuous time invariant systems by Lyapunov second				
	punov functions – Variable gradient method – Krasooviski's meth				

M.TECH. IN EMBEDDED SYSTEMS

COURSE STRUCTURE & SYLLABI

Textbooks:

1. M.Gopal, Modern Control System Theory, New Age International - 1984

2. Ogata. K, Modern Control Engineering, Prentice Hall - 1997

3. N K Sinha, Control Systems, New Age International – 3rd edition.

Reference Books:

1. Donald E.Kirk, Optimal Control Theory an Introduction, Prentice - Hall Network series - First edition.

Course Code 21D38301b	ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING	L 3	T 0	P 0	C 3
210303010	Semester	3	II	-	3
	Semester				
Course Objectiv					
Ŷ	the difference between optimal reasoning vs human like reasoning				
	rstand the notions of state space representation, exhaustive search		ristic	6001	·ch
	th the time and space complexities	i, neu	listic	sear	CII
•	different knowledge representation techniques				
		Deer	.:	Erre	~ ~**
	rstand the applications of Al: namely Game Playing, Theorem	PIOV	mg,	схр	en
	Machine Learning and Natural. Language Processing				
	es (CO): Student will be able to	1		1	•
	the ability to formulate an efficient problem space for a problem	lem e	xpres	ssea	ın
English.			•, ,•		1
	the ability to select a search algorithm for a problem and character	erize	its th	ne a	nd
•	mplexities.				
	he skill for representing knowledge using the appropriate technique			-	
	the ability to apply Al techniques to solve problems of Game	e Play	'ıng,	Exp	ert
	Machine Learning and Natural Language Processing.	-			
UNIT - I			ture F	Irs:	
	tory, Intelligent Systems, Foundations of AI, Sub areas of AI, Appl				
	- State-Space Search and Control Strategies: Introduction, General				
•	eristics of Problem, Exhaustive Searches, Heuristic Search Techniq	•			
	constraint Satisfaction. Game Playing, Bounded Look-ahead Strateg	gy and	l use	of	
	ions, Alpha-Beta Pruning				
UNIT - II		Lect	ture F	Irs:	
	and Logic Programming				
	positional Calculus, Propositional Logic, Natural Deduction Syster				
	c Tableau System in Propositional Logic, Resolution Refutation in				
0	Logic, Logic Programming. Knowledge Representation: Introducti			iches	5
	presentation, Knowledge Representation using Semantic Network,	, Extei	nded		
	ks for KR, Knowledge Representation using Frames.	T			
UNIT - III		Lect	ture F	Irs:	
	and Applications				
	ses in Building Expert Systems, Expert System Architecture, Expe				
	ms, Truth Maintenance Systems, Application of Expert Systems, L				
	ty Measure – Probability Theory: Introduction, Probability Theory,	Baye	sian	Belie	ef
	nty Factor Theory, Dempster-Shafer Theory.				
UNIT - IV		Lect	ture F	Irs:	
Machine-Learni	0 0				
	chine Learning Systems. Supervised and Unsupervised Learning. In				
	ng Decision Trees (Text Book 2), Deductive Learning. Clustering,				
	cial Neural Networks: Introduction, Artificial Neural Networks, Sin	0	•		
	ks, Multi-Layer Feed-Forward Networks, Radial- Basis Function N	etwor	ks, D	esig	n
	al Neural Networks, Recurrent Networks.	<u> </u>			
UNIT - V		Lect	ture F	Irs:	
	vledge Representation Techniques	00 Å	ol	9	
Case Grammars,	Semantic Web Natural Language Processing: Introduction, Sentend	ce An	arysis	5	
	28				

M.TECH. IN EMBEDDED SYSTEMS

COURSE STRUCTURE & SYLLABI

Phases, Grammars and Parsers, Types of Parsers, Semantic Analysis, Universal Networking Knowledge.

Textbooks:

- 1. Saroj Kaushik. Artificial Intelligence. Cengage Learning, 2011.
- 2. Russell, Norvig: Artificial intelligence, A Modern Approach, Pearson Education, Second Edition. 2004.

Reference Books:

1. Rich, Knight, Nair: Artificial intelligence, Tata McGraw Hill, Third Edition 2009.

Course Code	SOFT COMPUTING TECHNIQUES	L	Т	Р	C
21D06301b		3	0	0	3
	Semester		Ι	Ι	
Course Objectives:					
• To understand th	e concepts of different types neural networks				
• To understand th	e concepts of fuzzy logic systems				
• To learn concept	s of genetic algorithm				
Course Outcomes (CO): Student will be able to				
• Understand the c	concepts of different types neural networks				
	concepts of fuzzy logic systems				
	of genetic algorithm				
UNIT - I		Leo	ture	Hrs:	
	eural Networks & Feed Forward Networks: Basic Concept o				
	rain, Models of an Artificial Neuron, Learning Methods, Neura			ks	
Architectures.					
Feed Forward Neur	ral Network: Single Layer Feed Forward Neural Network, The	Perc	eptro	on	
Model,			•		
Multilayer Feed Forv	ward Neural Network, Architecture of a Back Propagation Netw	vork(BPN), Th	e
Solution, Backpropa	gation Learning, Selection of various Parameters in BPN. Appl	icatio	on of	Back	ĸ
propagation Network	s in Pattern Recognition & Image Processing.				
UNIT - II		Leo	cture	Hrs:	
Associative Memor	ies & ART Neural Networks: Basic concepts of Linear A	Asso	ciato	r, Ba	asic
1	mical systems, Mathematical Foundation of Discrete-T			•	
	thematical Foundation of Gradient-Type Hopfield Networks, T				
	e Networks, Applications of HPF in Solution of Optim				
	Traveling salesman tour length, Summing networks with digita				
	r Equations, Bidirectional Associative Memory Networks; (Clust	er St	ructu	ure,
	Classical ART Networks, Simplified ART Architecture				
UNIT - III			cture		
	ems: Fuzzy sets, Crisp Relations, Fuzzy Relations, Crisp Logic				
••••	Fuzzy Rule based system, Defuzzification Methods, Applicatio	ns: C	Greg	Viot'	s
	ller, Air Conditioner Controller.	_			
UNIT - IV			ture		
8	Basic Concepts of Genetic Algorithms (GA), Biological back	0			
	ng Principle, Encoding, Fitness Function, Reproduction, Inheri		e Ope	erator	s,
	n and Deletion, Mutation Operator, Bit-wise Operators used in	GA,			
	Convergence of Genetic Algorithm.	т			
UNIT - V	fill hild contained Name 1 National La France La Sin and C		ture		
	pes of Hybrid Systems, Neural Networks, Fuzzy Logic, and Ge		•		
	orithm based BPN: GA Based weight Determination, Fuzzy Ba				
Inference by fuzzy B	uzzy numbers, Fuzzy Neuron, Fuzzy BP Architecture, Learning	gmr	ruzzy	DPI	Ν,
	FIN.				
Textbooks:	ificial Neural Systems - J.M.Zurada, Jaico Publishers				
	Fuzzy Logic & Genetic Algorithms: Synthesis & Applications -	S Po	iacal	aron	
	Pai, July 2011, PHI, New Delhi.	5.170	gaser	aran	,
	s by David E. Gold Berg, Pearson Education India, 2006.				
5. Genetic Aigorithin	s by David E. Oold Dorg, i carsoli Education muta, 2000.				

M.TECH. IN EMBEDDED SYSTEMS

COURSE STRUCTURE & SYLLABI

4. Neural Networks & Fuzzy Sytems- Kosko.B., PHI, Delhi, 1994.

Reference Books:

1. Artificial Neural Networks - Dr. B. Yagananarayana, 1999, PHI, New Delhi.

2.An introduction to Genetic Algorithms - Mitchell Melanie, MIT Press, 1998

3. Fuzzy Sets, Uncertainty and Information- Klir G.J. & Folger. T. A., PHI, Delhi, 1993.

Course Code	DESIGN OF FAULT TOLERANT SYSTEMS	L	T	Р	C
21D06103b		3	0	0	3
	Semester		II	[
Course Objectiv					
-	de broad understanding of fault diagnosis and tolerant design appro				
	ate the framework of test pattern generation using semi and full au	tomat	ic		
approach					
	re the knowledge of scan architectures.				
	re the knowledge of design of built-in-self test.				
	es (CO): Student will be able to				
	proad understanding of fault diagnosis and tolerant design approach				
	the framework of test pattern generation using semi and full autom	iatic a	ppro	ach.	
^	the knowledge of scan architectures.				
	the knowledge of design of built-in-self test.	.			
UNIT - I	<u> </u>	Lect	ure I	Hrs:	
Fault Tolerant I	6	D.1.4	1.		
	Reliability concepts, Failures & faults, Reliability and Failure rate, I				en
-	ean time between failure, maintainability and availability, reliability	or se	ries,		
Fault Tolerant I	lel-series combinational circuits.				
	atic, dynamic, hybrid, triple modular redundant system (TMR), 5M	ſ₽			
-	echniques, Data redundancy, Time redundancy and software Redun		a cor	icent	te
UNIT - II	configues, Data reduitdancy, Time reduitdancy and software Reduit	Lect			.0.
	rcuits & Fail safe Design	Leet		<u> </u>	
	f self checking circuits, Design of Totally self checking checker, Ch	necker	rs us	ing r	n
	erger code, Low cost residue code.			0	
	Strongly fault secure circuits, fail safe design of sequential circuits	s usin	g par	rtitio	n
theory and Berge	r code, totally self checking PLA design				
UNIT - III		Lect	ure I	Hrs:	
Design for Testa	bility				
	ility for combinational circuits: Basic concepts of Testability, Contra				
•	e Reed Muller's expansion technique, use of control and syndrome	testal	ole d	esig	ns.
	ility by means of scan		_		
	Festable, Testability Insertion, Full scan DFT technique- Full scan i				
1	ull scan design and Test, Scan Architectures-full scan design, Shad	low re	giste	er DI	FΤ,
	ods, multiple scan design, other scan designs.				
UNIT - IV		Lect	ure I	Hrs:	
Logic Built-in-se		Т. Т.	at D		
	mory-based BIST, BIST effectiveness, BIST types, Designing a BIS			itteri	a
	ging TPGs, exhaustive counters, ring counters, twisted ring counter gister, Output Response Analysis-Engaging ORA's, One's counter,				
	ecking, Serial LFSRs, Parallel Signature analysis, BIST architecture				ьd
	centralised and separate Board-level BIST architecture, Built-in ev				
	lom Test socket(RTS), LSSD On-chip self test, Self –testing using				-11
	nt BIST, BILBO, Enhancing coverage, RT level BIST design-CUT			•	
	in Dis 1, Dilbo, Emilanening coverage, RT level Dis 1 design Co 1 in thesis, RTS BIST insertion, Configuring the RTS BIST, incorpora	•	,,		
•	BIST, Design of STUMPS, RTS and STUMPS results.	0			

M.TECH. IN EMBEDDED SYSTEMS

UNIT - V	Lecture Hrs:					
Standard IEEE Test Access Methods						
Boundary Scan Basics, Boundary scan architecture- Test access port, Boundary scan	n registers, TAP					
controller, the decoder unit, select and other units, Boundary scan Test Instructions-Mandatory						
instructions, Board level scan chain structure-One serial scan chain, multiple-scan chain with one						
control test port, multiple-scan chains with one TDI, TDO but multiple TMS, Multip						
multiple access port, RT Level boundary scan-inserting boundary scan test hardware	e for CUT, Two					
module test case, virtual boundary scan tester, Boundary Scan Description language	•					
Textbooks:						
1. Fault Tolerant & Fault Testable Hardware Design- Parag K.Lala, PHI, 1984.						
2. Digital System Test and Testable Design using HDL models and Architecture	ès -					
ZainalabedinNavabi, Springer International Ed.,						
Reference Books:						
1. Digital Systems Testing and Testable Design-MironAbramovici, Melvin A.Breu	er and Arthur D.					
Friedman, Jaico Books						

- 2. Essentials of Electronic Testing- Bushnell &VishwaniD.Agarwal,Springers.
- 3. Design for Test for Digital IC's and Embedded Core Systems- Alfred L. Crouch, 2008

Course Code	HARDWARE AND SOFTWARE CO-DESIGN	L	Т	Р	C
21D06204a		3	0	0	3
	Semester		Ι	Ι	
Course Objectiv					
-	e knowledge on various models of Co-design.				
-	e interrelationship between Hardware and software in a embedded	-			
·	e knowledge of firmware development process and tools during Co	o-des	sign.		
	d validation methods and adaptability.				
	es (CO): Student will be able to				
<u>^</u>	knowledge on various models of Co-design.				
• Explore the i	nterrelationship between Hardware and software in a embedded sys	stem			
• Acquire the l	knowledge of firmware development process and tools during Co-d	esigi	1.		
Understand v	validation methods and adaptability.				
UNIT - I		Leo	ture	Hrs:	
Co- Design Issue					
	els, Architectures, Languages, A Generic Co-design Methodology.	Co-	Syntl	nesis	
Algorithms					
	re synthesis algorithms: hardware – software partitioning distribute	d sy	stem	co-	
synthesis.					
UNIT - II		Leo	eture	Hrs:	
Prototyping and					
Prototyping and					ure
developments in		hnıq	ues,	syst	em
communication i					
Target Architec			A 1		
	cialization techniques, System Communication infrastructure, Ta				
	System classes, Architecture for control dominated systems (8051-				
	e control), Architecture for Data dominated systems (ADSP2106	0, 1	MS3	2006	10),
Mixed Systems.		Ta		T Taras	
UNIT - III	chniques and Tools for Embedded Processor Architectures	Lec	cture	HIS:	
-	ed architectures, embedded software development needs, compilat	ion	taahn	alag	iac
	ration in a compiler development environment.	1011	lecim	olog	105,
UNIT - IV	· · ·	Ιa	ture	Ure	
	tion and Verification	Lu	luic	1115.	
e	n, the co-design computational model, concurrency coordinating co	ncur	rent		
	erfacing components, design verification, implementation verificat			catic	m
tools, interface v		1011,		curio	
UNIT - V		Leo	cture	Hrs:	
	ystem – Level Specification and Design-I				
	pecification, design representation for system level synthesis, system	n lev	rel		
specification lang					
	ystem – Level Specification and Design-II				
	becifications and multi language co-simulation, the cosyma system	and	lycos		
system.			-		
Textbooks:					

M.TECH. IN EMBEDDED SYSTEMS

COURSE STRUCTURE & SYLLABI

- 1. Hardware / Software Co- Design Principles and Practice Jorgen Staunstrup, Wayne Wolf Springer, 2009.
- 2. Hardware / Software Co- Design Giovanni De Micheli, MariagiovannaSami,Kluwer Academic Publishers, 2002.

Reference Books:

1. A Practical Introduction to Hardware/Software Co-design -Patrick R. Schaumont, Springer, 2010.

Course Code	EMBEDDED SYSTEM DESIGN LAB	L	Т	Р	С
21D06205		0	0	4	2
	Semester]	I	
Course Objective					
	rize with embedded systems programming concepts				
• To implem	nent different embedded communication and interfacing proto-	cols			
Course Outcomes	s (CO):				
Familiariz	e with embedded systems programming concepts				
Implement	t different embedded communication and interfacing protocols	S			
List of Experimer	nts:				
1. Functional Testi					
Ū.	to the device into a stable functional state by porting desktop	o envi	ronm	ent w	<i>ith</i>
necessary package					
1 0 1	lay on to other Systems	COL	r 1.		K711
0	ilable laptop/desktop displays as a display for the device using	g SSE		nt & .	XII
display server.	nina				
3. GPIO Program	vailable GPIO pins of the corresponding device using native p	roara	mmir	10	
	ng of I/O devices like LED/Switch etc., and testing the function			ig	
4. Interfacing Chr		Jilain	y.		
0	a programmable Texas Instruments watch which can be used	for m	ultipl	e	
	control, Mouse operations etc., Exploit the features of the dev				ng
with devices.			•		C
	ol Based On Light Intensity				
	sors, monitor the surrounding light intensity & automatically	turn (ON/O	FF th	ie
	's by taking some pre-defined threshold light intensity value.				
6. Battery Voltage	•		(6	c	
	e level of the battery and indicating the same using multiple L EDs turn on 2 LEDs for $2.2V_{2}$ LEDs for $1.2V_{1}$ LEDs for				
all for OV)	EDs, turn on 3 LED s for 2-3V, 2 LEDs for 1-2V, 1 LED for	0.1-1	væi	um)11
7. Dice Game Sim	ulation				
	e conventional dice, generate a random value similar to dice v	alue	and d	isplay	v the
	LCD. A possible extension could be to provide the user with				
single or double di	A A	I			U
	News Feed On Display Interface				
Displaying the RS	S news feed headlines on a LCD display connected to device.	This	can b	e ada	pted
	ke twitter or other information websites. Python can be used t	to acq	uire o	data f	rom
the internet.					
9. Porting Open w					
	device while connecting to a WiFi network using a USB dong	gle ar	id at t	he sa	me
1 0	rireless access point to the dongle.				
10. Hosting a web	isite on Board ng a simple website(static/dynamic) on the device and make in	tacco	ooihl	a onli	no
-	install server (eg: Apache) and thereby host the website.	i acce	.551010		ne.
11. Webcam Serve					

M.TECH. IN EMBEDDED SYSTEMS

COURSE STRUCTURE & SYLLABI

Interfacing the regular USB webcam with the device and turn it into fully functional IP webcam & test the functionality. 12. FM Transmission

Transforming the device into a regular FM transmitter capable of transmitting audio at desired frequency (generally 88-108 Mhz)

Software Requirements: Keil / Python **Hardware Requirements:** Arduino/Raspbery Pi/Beaglebone

Course Code	EMBEDDED PROGRAMMING LAB	L	Т	Р	С
21D55202		0	0	4	2
	Semester]	Ι	
Course Objec	tives:				
	lerstand the concepts of Embedded 'C' programming				
	plement given program on 8051 microcontroller				
• To im	blement given program on LPC2148 microcontroller				
Course Outco					
• Under	stand the concepts of Embedded 'C' programming				
	nent given program on 8051 microcontroller				
•	nent given program on LPC2148 microcontroller				
List of Experi	ments:				
	programming and testing using 8051 advanced development l	ooard	and	KEI	L
tools.					
1. (i) Pro	gram to perform arithmetic operations.				
(ii) Program to perform sorting of numbers.				
2. Progra	m to shift LED's Left and right.				
3. Progra	m for DIP switch interface.				
4. Progra	m to display message in LCD 8 bit mode.				
5. Progra	m to display picture in GLCD 128X64.				
	m to send data serially through serial port.				
	m to display I2C RTC(DS1307) to Hyper terminal window.				
0	m to display digital temperature sensor output.				
	m for 4X4 matrix keyboard with LCD.				
U	m to interface stepper motor.				
	m to interface relay.				
0	programming and testing using LPC2148 development kit(Re	al tin	ne		
environment)					
1. Progra	m to interface LED and implement Multi-tasking.				
	m to display RTC-ADC on LCD.				
3. Progra	m to display message on GLCD				
Software Req	uirements:				
Keil for C51, I	Keil for ARM				
Hardware Re	quirements:				
	nent boards, LPC2148 Development boards				

M.TECH. IN EMBEDDED SYSTEMS

Course Code EMBEDDED SYSTEMS PROTOCOLS	L	Т	Р	C
21D06301a	3	0	0	3
Semester		II	I	
Course Objectives:				
• To acquire knowledge on communication protocols of connecting Embedded S	Systen	ns.		
• To understand the design parameters of USB and CAN bus protocols.	•			
• To understand the design issues of Ethernet in Embedded networks.				
• To acquire the knowledge of wireless protocols in Embedded domain.				
Course Outcomes (CO): Student will be able to				
• Acquire knowledge on communication protocols of connecting Embedded Sys	tems.			
• Understand the design parameters of USB and CAN bus protocols.				
• Understand the design issues of Ethernet in Embedded networks.				
• Acquire the knowledge of wireless protocols in Embedded domain.				
UNIT - I	Lec	ture H	Irs:	
Embedded Communication Protocols				
Embedded Networking: Introduction – Serial/Parallel Communication – Serial cor	nmuni	icatio	n	
protocols -RS232 standard – RS485 – Synchronous Serial Protocols -Serial Periph				
(SPI) – Inter Integrated Circuits (I2C) – PC Parallel port programming - ISA/PCI I				
Firewire.	I.			
UNIT - II	Lec	ture H	Irs:	
USB and CAN Bus				
USB bus – Introduction – Speed Identification on the bus – USB States – USB bus	com	nunic	cation	1
Packets – Data flow types – Enumeration – Descriptors – PIC 18 Microcontroller US				
Programs – CAN Bus – Introduction - Frames –Bit stuffing – Types of errors – Nom				
PIC microcontroller CAN Interface – A simple application with CAN.			C	
UNIT - III	Lec	ture H	Irs:	
Ethernet Basics				
Elements of a network - Inside Ethernet - Building a Network: Hardware	optio	ns –	Cab	les,
Connections and network speed - Design choices: Selecting components -Ethe		Conti	oller	с s —
Using the internet in local and internet communications - Inside the Internet proto-	col.			
UNIT - IV	Lec	ture H	Hrs:	
Embedded Ethernet				
Exchanging messages using UDP and TCP – Serving web pages with Dynamic Da	ta – S	ervin	ig we	b
pages that respond to user Input – Email for Embedded Systems – Using FTP – Ke	eping	Dev	ices a	and
Network secure.	•			
UNIT - V	Lec	ture I	Hrs:	
Wireless Embedded Networking				
Wireless sensor networks – Introduction – Applications – Network Topology – Lo				
Synchronization - Energy efficient MAC protocols -SMAC - Energy efficient and	robu	st rou	ting	-
Data Centric routing.				
Textbooks:				
1. Embedded Systems Design: A Unified Hardware/Software Introduction - Frank	Vahio	l, Toi	ny	
Givargis, John & Wiley Publications, 2002.				
2. Parallel Port Complete: Programming, interfacing and using the PCs parallel pri	nter p	ort	Jan	
Axelson, Penram Publications, 1996.				
Reference Books:				

M.TECH. IN EMBEDDED SYSTEMS COURSE STRUCTURE & SYLLABI

1. Advanced PIC microcontroller projects in C: from USB to RTOS with the PIC18F series - Dogan Ibrahim, Elsevier 2008.

2. Embedded Ethernet and Internet Complete - Jan Axelson, Penram publications, 2003.

3. Networking Wireless Sensors - BhaskarKrishnamachari , Cambridge press 2005.

M.TECH. IN EMBEDDED SYSTEMS

Course Code	COMMUNICATION BUSES AND INTERFACES	L	Т	P	C
21D06301c		3	0	0	3
	Semester		II	Ι	
Course Objectiv	es:				
To under	stand the concepts of different types of serial buses.				
• To learn	about CAN, PCIe and USB architecture				
• To learn	about data streaming using serial communication protocols				
Course Outcom	es (CO): Student will be able to				
 Understa 	nd the concepts of different types of serial buses.				
• Learn ab	out CAN, PCIe and USB architecture				
• Learn ab	out data streaming using serial communication protocols				
UNIT - I		Lec	ture I	Irs:	
Serial Busses- C	ables, Serial busses, serial versus parallel, Data and Control Signal	l- dat	a frar	ne, d	ata
rate, features, Lir	nitations and applications of RS232, RS485, I2C, SPI				
UNIT - II		Lec	ture I	Irs:	
CAN ARCHITE	CTURE- ISO 11898-2, ISO 11898-3, Data Transmission- ID allo	ocatio	n, Bi	t	
	pplication layers, Object layer, Transfer layer, Physical layer, Fra				ata
frame, Remote fr	ame, Error frame, Over load frame, Ack slot, Inter frame spacing,	Bit s	pacin	g,	
Applications.		-	_	-	
UNIT - III		Lec	ture I	Hrs:	
PCIe					
	uration space- configuration mechanism, Standardized registers, B	lus er	numer	ratior	1,
	ftware implementation, Hardware protocols, Applications.				
UNIT - IV		Lec	ture I	Hrs:	
USB		_			
• •	Control transfers, Bulk transfer, Interrupt transfer, Isochronous tran				
	vice detection, Default state, Addressed state, Configured state, er				
	riptor types and contents- Device descriptor, configuration descriptor	otor, I	Interf	ace	
	bint descriptor, String descriptor. Device driver.	τ	(T	T	
UNIT - V	Geniel Communication Protocol Control Front Devel Date Develo		ture H	Irs:	
0	Serial Communication Protocal- Serial Front Panel Data Port(SI				
	low control, serial FPDP transmission frames, fiber frames and co	pper	cable	•	
Textbooks:	in Collecterent II. And Network Wilfeld Were Course 1.11	1 1 1 .	1: -		
•	ive Guide to controller Area Network – Wilfried Voss, Copperhil		na		
Corporation, 2nd	Ed., 2005. nplete-COM Ports, USB Virtual Com Portsand Ports for Embedde	d Suc	tomo	Ion	
	w Research, 2nd Ed.,	u sys	otenns	- Jail	
Reference Books					
	e – Jan Axelson, Penram Publications.				
	chnology – Mike Jackson, Ravi Budruk, Mindshare Press.				
2.1 CI Expless Te	ennorogy – white Jackson, Kavi Duuruk, windshare riess.				

Course Code	ROBOTICS	L	Т	P	С
21D55301a		3	0	0	3
	Semester		II	Ι	
Course Objective	s:				
 To describ 	e the various elements that make an industrial robot system				
 To discuss 	various applications of industrial robot systems				
To analyze	e robot manipulators in terms of their kinematics, kinetics, and co	ontrol	l		
	a model robot manipulators and analyze their performance, as using a MATLAB-based Robot Toolbox	thro	ough	runn	ing
Course Outcomes	s (CO): Student will be able to				
• Describe t	he various elements that make an industrial robot system				
 Discuss va 	arious applications of industrial robot systems				
• Analyze ro	bot manipulators in terms of their kinematics, kinetics, and contra	rol			
• Design a	model robot manipulators and analyze their performance,	thro	ugh	runn	ing
	s using a MATLAB-based Robot Toolbox				
UNIT - I			ture I		
	asic Definitions: History pf robots-robot anatomy, Coordinate S			luma	n
	s, Cartesian, Cylindrical, Polar, coordinate frames, mapping tra				
UNIT - II			ture I		
	erse Kinematics: Kinematics, Mechanical structure and notation		-		
	DenavitHatenberg notation, manipulator transformation matrix, e	examj	ples 1	nvers	e
kinematics.		τ	(T	T	
UNIT - III Differential Mati	on Station Dynamia Modeling, Velocity Dynamostics along		ture I		ton
	on – Statics – Dynamic Modeling: Velocity Propagation along l in singularities – Lagrange Euler formulation Newton Euler form				
trajectory planning		uiatit	JII Ua	sies e	1
UNIT - IV	,	Lec	ture I	Irs	
	Actuators Sensors and Vision: Hydraulic and Electrical Systems 1				15
	cylinders, stepper motors, Encoders and AC Motors Range and u				5,
	sistance Transducers, Piezo-electric, Infrared and Lasers Applica				s:
	trasonic, Barcode Readers and RFID – Fundamentals of Robotic				
UNIT - V			ture I	Irs:	
Robots and Appli	cations.: Industrial Applications – Processing applications – Ass	embl	y		
applications, Inspe	ction applications, Non Industrial applications.		•		
Textbooks:					
	nd Control : R.K. Mittal and I.J. Nagarath, TMH 2003.				
	on to Robotics – P.J. Mckerrow, ISBN: 0201182408				
	on to Robotics – S. Nikv, 2001, Prentice Hall,				
	nics and Robotics: Design & Applications – A. Mutanbara, 1999,	CRC	C Pres	s.	
Reference Books:1.Robotics -					
	- K.S. Fu, R.C. Gonzalez and C.S.G. Lee, 2008, TMH.				

M.TECH. IN EMBEDDED SYSTEMS

COURSE STRUCTURE & SYLLABI

AUDIT COURSE-I

Course Code	ENGLISH FOR RESEARCH PAPER WRITING	L	Т	Р	С
21DAC101a	ENGLISH FOR RESEARCH FAI ER WRITHIG	2	0	0	0
210/1010	Semester]	v	U
	Semester				
Course Objectiv	es: This course will enable students:				
Understar	nd the essentials of writing skills and their level of readability				
Learn abo	out what to write in each section				
	alitative presentation with linguistic accuracy				
Course Outcome	es (CO): Student will be able to				
• Understa	nd the significance of writing skills and the level of readability				
Analyze a	and write title, abstract, different sections in research paper				
•	the skills needed while writing a research paper				
UNIT - I		Lecture	e Hrs	:10	
1 Overview of a H	Research Paper- Planning and Preparation- Word Order- Useful	Phrase	es - E	Break	ing
up Long Sentence	es-Structuring Paragraphs and Sentences-Being Concise and Ren	noving	Red	unda	ncy
-Avoiding Ambig	uity				
UNIT - II		Lecture			
	nents of a Research Paper- Abstracts- Building Hypothesis-F gs- Hedging and Criticizing, Paraphrasing and Plagiarism, Cauter			oblei	n -
				1.0	
UNIT - III		Lecture			
Conclusions-Reco	ew of the Literature – Methodology - Analysis of the Data-Finomendations.	dings ·	· D1s	cuss1	on-
UNIT - IV		Leo	ture	Hrs:	9
Key skills needed	for writing a Title, Abstract, and Introduction				
UNIT - V		Leo	ture	Hrs:)
Appropriate lange	lage to formulate Methodology, incorporate Results, put forth A	rgume	nts a	nd di	aw
Conclusions		-			
Suggested Readi					
	R (2006) Writing for Science, Yale University Press (available of	n Goo	gle E	Books	;)
	urriculum of Engineering & Technology PG Courses [Volume-I]				
	006) How to Write and Publish a Scientific Paper, Cambridge Un			ess	
	N (1998), Handbook of Writing for the Mathematical Sciences,	SIAM	•		
Highman					
	Vallwork, English for Writing Research Papers, Springer New Yo	ork Do	rdree	cht	
Heidelber	rg London, 2011				

M.TECH. IN EMBEDDED SYSTEMS

Course Code DISASTER MANAGEMENT	L	Т	Р	С
21DAC1010	2	0	0	0
Semester			[
Course Objectives: This course will enable students:				
Course Objectives. This course will enable students.				
• Learn to demonstrate critical understanding of key concepts	n disas	ter risk	reducti	on
and humanitarian response.				
 Critically evaluatedisasterriskreduction and humanitarian response p 	olicy and	d practic	e from	
Multiple perspectives.Developanunderstandingofstandardsofhumanitarianresponseandprac	icolrolo	ancoin	pooific	typos
of disasters and conflict situations	leanere	vancems	specific	types
Criticallyunderstandthestrengthsandweaknessesofdisastermanageme	itapproa	ches.pla	nninga	nd
programming in different countries, particularly their home country				
UNIT - I				
Introduction:				
Disaster:Definition,FactorsandSignificance;DifferenceBetweenHazardandD	saster;N	aturalar	d	
Manmade Disasters: Difference, Nature, Types and Magnitude.				
Disaster Prone Areas in India:				
Study of Seismic Zones; Areas Prone to Floods and Droughts, Landslides				
to Cyclonic and Coastal Hazards with Special Reference to Tsunami;	Post- D	isaster]	Disease	s and
Epidemics				
UNIT - II				
Repercussions of Disasters and Hazards:				
Economic Damage, Loss of Human and Animal Life, Destruction of E	-			
Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts and Famines, L				
Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil S	icks and	l Spills,	Outbrea	aks of
Disease and Epidemics, War and Conflicts.				
UNIT - III				
Disaster Preparedness and Management:				
Preparedness: Monitoring of Phenomena Triggering ADisasteror Ha				
Application of Remote Sensing, Data from Meteorological and Other	Agenci	es, Mec	lia Re	ports:
Governmental and Community Preparedness.	-			
UNIT - IV				
Risk Assessment Disaster Risk:				
Concept and Elements, Disaster Risk Reduction, Global and Nation	al Disa	ster Ri	sk Situ	ation.
TechniquesofRiskAssessment,GlobalCo-OperationinRiskAssessmentand W	arning, F	eople's	Particip	oation
in Risk Assessment. Strategies for Survival.				
UNIT - V				
Disaster Mitigation:				
Meaning, Concept and Strategies of Disaster Mitigation, Emerging Trends In Mitigation, Concept and Strategies of Disaster Mitigation, Concept and Strategies of Disa	-	ructural		
Mitigation Mon-Structural Mitigation, Programs of Disaster Mitigation	n India.			
Suggested Reading				

- $1. \hspace{0.1in} R. Nishith, SinghAK, ``Disaster Management in India: Perspectives, is sues and strategies$
- "New Royal book Company..Sahni,PardeepEt.Al.(Eds.),"DisasterMitigationExperiencesAndReflections",PrenticeHa Il OfIndia, New Delhi.
- 3. GoelS.L.,DisasterAdministrationAndManagementTextAndCaseStudies",Deep&Deep Publication Pvt. Ltd., New Delhi

M.TECH. IN EMBEDDED SYSTEMS

Course Code	SANSKI	RITFOR TECHNICAL	KNOWLEDGE	L	Т	P	С
21DAC101c				2	0	0	0
			Semester			I	
Course Objectiv	ves. This cour	se will enable students:					
v							
•	•	vledge in illustrious Sans		guage in	n the wo	orld	
		o improve brain functioni					
		evelopthelogicinmathem	atics,science&othersu	ibjects e	nhancin	g the	
memory	1						
Ų	÷	ars equipped with Sanskr	it will be able to expl	ore the	huge		
	dge from ancie						
	· · · · ·	lent will be able to					
	•	anskrit language	1 1 1	. 1			
		ture about science &tech	<i>C</i> ,	tood			
• Being a	logical langua	ge will help to develop lo	egic in students				
Alphabets in Sa	andrit						
UNIT - II	1115K11t,						
UNII - II Past/Present/Futu	una Tanga Sin	nla Cantanaga					
UNIT - III	ure Tense, Sin						
Order, Introducti	ion of roots						
		1					
UNIT - IV							
	mation about S	Sanskrit Literature					
UNIT - V				<u> </u>			
Technical conce	epts of Engine	ering-Electrical, Mechani	cal, Architecture, Ma	thematic	es		
Suggested Read	ling						
1."Abhyaspusta	akam" –Dr.V	ishwas, Sanskrit-Bhart	i Publication, New	Delhi			
2."Teach Your	cself Sansk	rit" Prathama Deeks	ha- VempatiKutun	nbshastı	i, Rash	triyaSa	nskri
Sansthanam, N	ew Delhi Pul	olication					
3."India's Glor	ious Scientifi	cTradition" Suresh Sou	ni, Ocean books (P)	Ltd.,N	ew Del	hi	

> M.TECH. IN EMBEDDED SYSTEMS COURSE STRUCTURE & SYLLABI

AUDIT COURSE-II

M.TECH. IN EMBEDDED SYSTEMS

Course Code		PEDAGOGY STUDIES	L	Т	Р	C
21DAC201a			2	0	0	0
		Semester]	Ι	
Course Objectiv	This cour	rse will enable students:				
ÿ						
		nceonthereviewtopictoinformprogrammedesign	andpoli	cy makii	ng	
	•	D, other agencies and researchers.				
•		nce gaps to guide the development.				
Students will be	, ,	dent will be able to				
		ticesarebeingusedbyteachersinformalandinform	alclass	ooms in	develo	nino
countries			luieiussi	ooms m	ue vero	ping
• What is t	the evidence	on the effectiveness of these pedagogical practi	ces, in v	what		
condition	ns, and with v	what population of learners?				
		tion(curriculumandpracticum)andtheschoolcurr	iculuma	nd guid	ance	
	s best support	effective pedagogy?				
UNIT - I						
		logy: Aims and rationale, Policy back ground,				
terminology	Theories	oflearning,Curriculum,Teachereducation.Co	nceptua	lframew	ork,Res	search
questions. Over	view of meth	odology and Searching.				
UNIT - II						
	rview: Pedag	gogical practices are being used by teacher	s in fo	rmal ar	nd inf	formal
		untries. Curriculum, Teacher education.				
UNIT - III						
Evidence on the	eeffectiveness	sofpedagogicalpractices, Methodologyfortheinde	epthstag	e:quality	assess	men
		in teacher education (curriculumandpracticum)				
		ort effective pedagogy? Theory of change. Stre				
		gogical practices. Pedagogic theory and pedago agogic strategies.	ogical a	pproach	es. Tea	chers
attitudes and be	ners and Peda	agogic strategies.				
UNIT - IV						
Professional de	evelopment:	alignment with classroom practices and follow-	up supp	ort, Peei	suppor	t,
Support from th	e head					
teacherandtheco	mmunity.Cu	rriculumandassessment,Barrierstolearning:limit	edresou	rcesand	large cl	ass
sizes						
UNIT - V						
01		ections:Researchdesign,Contexts,Pedagogy,Tea	cheredu	ication,		
Curriculum and	assessment,]	Dissemination and research impact.				
Suggested Read	ing					
1. AckersJ,	HardmanF(20	001)ClassroominteractioninKenyanprimaryscho	ools,Co	mpare,		
31 (2): 2						
2. Agrawal	M(2004)Curr	ricularreforminschools:Theimportanceofevaluat	ion,Jou	rnalof		

- 3. Curriculum Studies, 36 (3): 361-379.
- 4. AkyeampongK(2003) Teacher training in Ghana does it count? Multi-site teachereducation research project (MUSTER) country report 1. London: DFID.
- Akyeampong K, LussierK, PryorJ, Westbrook J (2013)Improving teaching and learning of basic maths and reading in Africa: Does teacherpreparation count?International Journal Educational Development, 33 (3): 272–282.
- 6. Alexander RJ(2001) Culture and pedagogy: International comparisons in primary education. Oxford and Boston: Blackwell.
- Chavan M (2003)ReadIndia: A mass scale, rapid, 'learning to read'campaign.
- 7. www.pratham.org/images/resource%20working%20paper%202.pdf.

M.TECH. IN EMBEDDED SYSTEMS

Course Code			L	Т	Р	С	
21DAC201b	ST	RESSMANAGEMENT BY YOGA	2	0	0	0	
		Semester		II			
Course Objecti	ves: This cour	se will enable students:					
		alth of body and mind					
10 0 0	come stres						
		dent will be able to					
1	•	in a healthy body thus improving social health	1 also				
 Improve 	efficiency						
UNIT - I							
Definitions of H	Eight parts of y	yog.(Ashtanga)					
UNIT - II							
Yam and Niyar	n.						
UNIT - III							
Do`sand Don't	'sin life.						
		nacharyaand aparigrahaii)					
UNIT - IV	n,tapa,swadny	ay,ishwarpranidhan					
Asan and Prana	wam						
UNIT - V	tyam						
	sesand theirbe	enefitsformind & body	1				
		echniques and its effects-Types of pranayam					
Suggested Read							
		ining-Part-I": Janardan SwamiYogabhyasiMar	dal, Nag	gpur			
		he Internal Nature" by Swami Vivekanan					
Ashrama (Public	cation Departm	nent), Kolkata					
-	•						

Course Code		EVELOPMENT THROUGHLIF			P	C
21DAC201c	ENLIG	HTENMENTSKILLS	2	0	0	0
		Semest	er		II	
<u>Course Objecti</u>	ves: This course will er	able students.				
	to achieve the highest		•			
	me a person with stable en wisdom in students	e mind, pleasing personality and det	erminati	on		
	es (CO): Student will	he able to				
		tawillhelpthestudentindevelopinghi	snersons	litvand a	chieve	
•	est goal in life		spersone	intyana a	ienne ve	
Ū.	U	etawilllead the nation and mankind	to peace	and pros	sperity	
•		lp in developing versatile personali	•	-	1 5	
UNIT - I						
Neetisatakam-	Holistic development of	f personality				
Verses-19,2	20,21,22(wisdom)					
Verses-29,2	31,32(pride &heroism)					
	28,63,65(virtue)					
UNIT - II						
	Holistic development of	f personality				
Verses-52,	53,59(dont's)					
	/3,75,78(do's)		1			
UNIT - III						
**	y to day work and dutie					
	agwadGeeta:Chapter2-					
•	· · · · · ·	ter6-Verses5,13,17,23,35,				
	Verses45,46,48.					
UNIT - IV						
	asic knowledge.					
	agwadGeeta:Chapter2-					
•	Verses13,14,15,16,17,					
UNIT - V	of Rolemodel. Shrimad	i Bhagwad Geeta:				
	erses 17, Chapter 3-Ver	sos 36 37 42				
-	erses 17, Chapter 5- vers erses 18, 38, 39	\$\$\$50,57,42,				
1	Verses37,38,63					
Suggested Read						
		rupanandaAdvaitaAshram(Publicat	onDepa	rtment),		
Kolkata	-		-			
		ngar-vairagya) by P.Gopinath, Ra	shtriyaSa	anskrit		
Sansthanam,	New Delhi.					

M.TECH. IN EMBEDDED SYSTEMS

COURSE STRUCTURE & SYLLABI

OPEN ELECTIVE

Course Code	INDUSTRIAL SAFETY	L	Т	Р	С
21DOE301b		3	0	0	3
	Semester			III	
Course Objective					
	about Industrial safety programs and toxicology, Industrial laws, re-	gulat	ions	and s	ource
models			.1	1	
	stand about fire and explosion, preventive methods, relief and its size	ing n	netho	ods	
	e industrial hazards and its risk assessment.				
	s (CO): Student will be able to				
	t important legislations related to health, Safety and Environment. t requirements mentioned in factories act for the prevention of accid	onto			
	stand the health and welfare provisions given in factories act.	ents.			
UNIT - I		Ιe	cture	Hre	
	Accident, causes, types, results and control, mechanical and ele				types
	ntive steps/procedure, describe salient points of factories act 1948				
	king water layouts, light, cleanliness, fire, guarding, pressure ves				
	ntion and firefighting, equipment and methods.	5015,	ete,	Dure	ly color
UNIT - II		Lee	cture	Hrs:	
	maintenance engineering: Definition and aim of maintenance eng				arv and
	ons and responsibility of maintenance department, Types of ma				
	ools used for maintenance, Maintenance cost & its relation with 1				
Service life of equ		1			5 /
UNIT - III		Lee	cture	Hrs:	
Wear and Corrosi	on and their prevention: Wear- types, causes, effects, wear reductio	n me	ethod	s, lub	ricants-
	tions, Lubrication methods, general sketch, working and applications				
	rease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick fe				
	vii. Ring lubrication, Definition, principle and factors affecting th	le co	rrosi	on. T	ypes of
	on prevention methods.	r			
UNIT - IV			cture		
	It tracing-concept and importance, decision treeconcept, need and				
	activities, show as decision tree, draw decision tree for proble				
	atic, automotive, thermal and electrical equipment's like, I. Any				
	pressor, iv. Internal combustion engine, v. Boiler, vi. Electrical mot	tors,	I ype	es of 1	aults in
UNIT - V	their general causes.	La	cture	Ura	
	Line maintenance: Deriodic increation concept and need dec				ng and
	ventive maintenance: Periodic inspection-concept and need, deg s, overhauling of mechanical components, overhauling of elect				
	edies of electric motor, repair complexities and its use, defini				
	eventive maintenance. Steps/procedure for periodic and preventiv				
	Pumps, iii. Air compressors, iv. Diesel generating (DG) sets, Pro				
	enance of mechanical and electrical equipment, advantages of pro-				
	ept and importance				
Textbooks:					
	ngineering Handbook, Higgins & Morrow, Da Information Services				
	ngineering, H. P. Garg, S. Chand and Company.				
Reference Books	:				
	gineering Handbook, Winterkorn, Hans, Chapman & Hall London.				
Reference Books 1. Pump-hydraulio	: c Compressors, Audels, Mcgrew Hill Publication.				

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR (Established by Govt. of A.P., ACT No.30 of 2008) ANANTHAPURAMU – 515 002 (A.P) INDIA

M.TECH. IN EMBEDDED SYSTEMS

COURSE STRUCTURE & SYLLABI

Course Code	BUSINESS ANALYTICS	L	Т	P	С
21DOE301c		3	0	0	3
	Semester			III	
Course Objective					
Course Objectives	bjective of this course is to give the student a comprehensive unde	mator	dina	of	
	alytics methods.	istai	lang	01	
Course Outcomes	(CO): Student will be able to				
	ill demonstrate knowledge of data analytics.				
 Students w 	ill demonstrate the ability of think critically in making decisions ba	ased	on		
	ep analytics.				
	ill demonstrate the ability to use technical skills in predicative and				
	e modeling to support business decision-making.				
	ill demonstrate the ability to translate data into clear, actionable in				
UNIT - I			cture		
•	: Overview of Business Analysis, Overview of Requirements, I	Role	of th	ne Bu	sines
Analyst.					
Stakeholders: the p	roject team, management, and the front line, Handling Stakeholder	Cor	flicts	5.	
UNIT - II		Le	cture	Hrs:	
Life Cycles: Syster	ms Development Life Cycles, Project Life Cycles, Product Life	Cycl	es, R	Requir	emen
Life Cycles.				-	
UNIT - III		Le	cture	Hrs:	
	nents: Overview of Requirements, Attributes of Good Requ				
	uirement Sources, Gathering Requirements from Stakeholders, Co				
	orming Requirements: Stakeholder Needs Analysis, Decor				
	ve Analysis, Gap Analysis, Notations (UML & BPMN), Flow				
	-Relationship Diagrams, State-Transition Diagrams, Data Flow	Diag	rams	, Use	Case
Modeling, Busines	s Process Modeling	1			
UNIT - IV			cture		
	ments: Presenting Requirements, Socializing Requirements and ements. Managing Requirements Assets: Change Control, Require				tance
UNIT - V		Le	cture	Hrs:	
	: Embedded and colleborative business intelligence, Visual	-			Date
Storytelling and Da		Jun		·,	240
Textbooks:					
	is by James Cadle et al.				
5	nent: The Managerial Process by Erik Larson and, Clifford Gray				
Reference Books:					
	nalytics Principles, Concepts, and Applications by Marc J. Schnied	lerja	ns, D	ara G	
	ns, Christopher M. Starkey, Pearson FT Press.	5	, -		
	nalytics by James Evans, persons Education.				

2. Business Analytics by James Evans, persons Education.

Course Code	WASTE TO ENERGY	L	Т	P	С
21DOE301e		3	0	0	3
	Semester	III			
Course Objective	25:				
Introduce	and explain energy from waste, classification and devices to	con	vert	wast	e to
energy.					
To impart	knowledge on biomass pyrolysis, gasification, combustion and co	nver	sion	proce	ess.
To educat	e on biogas properties ,bio energy system, biomass resources and	their	clas	sifica	ation
and bioma	ass energy programme in India.				
Course Outcome	s (CO): Student will be able to				
To know	about overview of Energy to waste and classification of waste.				
To acquir	e knowledge on bio mass pyrolysis, gasification, combustion and	conv	ersio	n pro	ocess
in detail.					
Ũ	knowledge on properties of biogas, biomass resources and program	ramn	nes t	o cor	ivert
	nergy in India.				
UNIT - I				Hrs:	
	nergy from Waste: Classification of waste as fuel - Agro base	ed, F	Fores	t resi	due,
	MSW – Conversion devices – Incinerators, gasifiers, digestors	Ŧ		TT T	10
UNIT - II				Hrs:	
	s: Pyrolysis – Types, slow fast – Manufacture of charcoal –	Metl	lods	- Y1	elds
and application –	Manufacture of pyrolytic oils and gases, yields and applications.				
UNIT - III				Hrs:1	
	tion: Gasifiers - Fixed bed system - Downdraft and updraft ga				
	sign, construction and operation – Gasifier burner arrangement for				
-	e arrangement and electrical power – Equilibrium and kin	netic	cons	sidera	tion
in gasifier operation	Dn	т		TT 1	10
UNIT - IV				Hrs:1	
	tion: Biomass stoves – Improved chullahs, types, some exotic c s, inclined grate combustors, Fluidized bed combustors, Design				
	tion of all the above biomass combustors.	, coi	istiu	2000	anu
UNIT - V	ton of an the above biomass combustors.	Leo	ture	Hrs:	10
	s of biogas (Calorific value and composition) - Biogas plar				
v	gy system - Design and constructional features - Biomass re			. .	
classification -	By system Design and constructional reactives Diomass re	bour	005	and	
	ion processes - Thermo chemical conversion - Direct comb	ustic	on -	bion	nass
	lysis and liquefaction - biochemical conversion - anaerobic dig				
biogas Plants –	Applications - Alcohol production from biomass - Bio die	esel	prod	luctio	n -
Urban waste to	energy conversion - Biomass energy programme in India.				
Textbooks:					
1. Non Conv	ventional Energy, Desai, Ashok V., Wiley Eastern Ltd., 2018				
2. Biogas T	echnology - A Practical Hand Book - Khandelwal, K. C. and M	Iahd	i, S.	S., T	MH,
2017					
Reference Books					
	d and Fuel from Biomass, Challal, D. S., IBH Publishing Co. Pvt.				1
	Conversion and Technology, C. Y. WereKo-Brobby and E. B. I	Haga	n, Jo	ohn V	Viley
& Sons, 1	996				

M.TECH. IN EMBEDDED SYSTEMS

COURSE STRUCTURE & SYLLABI

Online Learning Resources:

https://nptel.ac.in/noc/courses/noc19/SEM1/noc19-ch13/ https://www.youtube.com/watch?v=x2KmjbCvKTk