

Jawaharlal Nehru Technological University Anantapur (Established by Govt. of A.P., Act. No. 30 of 2008)

(Established by Govt. of A.P., Act. No. 30 of 2008) Ananthapuramu–515 002 (A.P) India

First Year B.Tech

Course Structures and Syllabi under R20 Regulations

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR (Established by Govt. of A.P., ACT No.30 of 2008) ANANTAPUR – 515 002 (A.P) INDIA

Semester-0

Induction Program: 3 weeks

S.No	Course No	Course Name	Category	L-T-P-C
1		Physical Activities Sports, Yoga and Meditation, Plantation	МС	0-0-6-0
2		Career Counselling	MC	2-0-2-0
3		Orientation to all branches career options, tools, etc.	МС	3-0-0-0
4		Orientation on admitted Branch corresponding labs, tools and platforms	EC	2-0-3-0
5		Proficiency Modules & Productivity Tools	ES	2-1-2-0
6		Assessment on basic aptitude and mathematical skills	MC	2-0-3-0
7		Remedial Training in Foundation Courses	MC	2-1-2-0
8		Human Values & Professional Ethics	MC	3-0-0-0
9		Communication Skills focus on Listening, Speaking, Reading, Writing skills	BS	2-1-2-0
10		Concepts of Programming	ES	2-0-2-0

(Common for All Branches of Engineering)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR (Established by Govt. of A.P., ACT No.30 of 2008) ANANTAPUR – 515 002 (A.P) INDIA

Mechanical Engineering

==

Semester - 1 (Theory - 5, Lab - 4)							
S.No	Course No	Course Name	Category	L-T-P	Credits		
1.	20A54101	Linear Algebra and Calculus	BS	3-0-0	3		
2.	20A51201T	Engineering Chemistry	BS	3-0-0	3		
3.	20A05201T	C-Programming & Data Structures	ES	3-0-0	3		
4.	20A02101T	Basic Electrical & Electronics Engineering	ES	3-0-0	3		
5.	20A03202	Engineering Workshop	ES	0-0-3	1.5		
6.	20A05202	IT Workshop	ES	0-0-3	1.5		
7.	20A51201P	Engineering Chemistry Lab	BS	0-0-3	1.5		
8.	20A05201P	C-Programming & Data Structures Lab	ES	0-0-3	1.5		
9.	20A02101P	Basic Electrical & Electronics Engineering Lab	ES	0-0-2	1.5		
				Total	19.5		

Semester – 2 (Theory – 5, Lab – 5)								
S.No	Course No	Course Name	Category	L-T-P/D	Credits			
1.	20A54201	Differential Equations and Vector Calculus	BS	3-0-0	3			
2.		Engineering Physics	BS	3-0-0	3			
3.		Communicative English	HS	3-0-0	3			
4.		Material Science & Engineering	ES	3-0-0	3			
5.		Engineering Drawing	ES	1-0-0/2	2			
6.		Engineering Graphics Lab	ES	0-0-2	1			
7.	20A52101P	Communicative English Lab	HS	0-0-3	1.5			
8.		Engineering Physics Lab	BS	0-0-3	1.5			
9.	20A03201P	Material Science Lab	ES	0-0-3	1.5			
10	20A52201	Universal Human Values	MC	3-0-0	0.0			
	Total 19.							

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ME)– I Sem L T P C 3 0 0 3

(20A54101) LINEAR ALGEBRA & CALCULUS

(Common to All Branches of Engineering)

Course Objectives:

- This course will illuminate the students in the concepts of calculus and linear algebra.
- To equip the students with standard concepts and tools at an intermediate to advanced level mathematics to develop the confidence and ability among the students to handle various real world problems and their applications.

UNIT -1

Matrices

Rank of a matrix by echelon form, normal form. Solving system of homogeneous and nonhomogeneous equations linear equations. Eigen values and Eigenvectors and their properties, Cayley-Hamilton theorem (without proof), finding inverse and power of a matrix by Cayley-Hamilton theorem, diagonalisation of a matrix.

Learning Outcomes:

At the end of this unit, the student will be able to

- Solving systems of linear equations, using technology to facilitate row reduction determine the rank, eigen values and eigenvectors (L3).
- Identify special properties of a matrix, such as positive definite, etc., and use this information to facilitate the calculation of matrix characteristics; (L3)

UNIT -2

Mean Value Theorems

Rolle's Theorem, Lagrange's mean value theorem, Cauchy's mean value theorem, Taylor's and Maclaurin theorems with remainders (without proof) related problems.

Learning Outcomes:

At the end of this unit, the student will be able to

- Translate the given function as series of Taylor's and Maclaurin's with remainders (L3)
- Analyze the behaviour of functions by using mean value theorems (L3)

UNIT -3

Multivariable Calculus

Partial derivatives, total derivatives, chain rule, change of variables, Jacobians, maxima and minima of functions of two variables, method of Lagrange multipliers.

Learning Outcomes:

At the end of this unit, the student will be able to

- Find partial derivatives numerically and symbolically and use them to analyze and interpret the way a function varies. (L3)
- Acquire the Knowledge maxima and minima of functions of several variable (L1)
- Utilize Jacobian of a coordinate transformation to deal with the problems in change of variables (L3)

UNIT -4

Multiple Integrals

Double integrals, change of order of integration, change of variables. Evaluation of triple integrals, change of variables between Cartesian, cylindrical and spherical polar co-ordinates. Finding areas and volumes using double and triple integrals.

Learning Outcomes:

At the end of this unit, the student will be able to

- Evaluate double integrals of functions of several variables in two dimensions using Cartesian and polar coordinates (L5)
- Apply double integration techniques in evaluating areas bounded by region (L4)
- Evaluate multiple integrals in Cartesian, cylindrical and spherical geometries (L5)

UNIT -5

Beta and Gamma functions

Beta and Gamma functions and their properties, relation between beta and gamma functions, evaluation of definite integrals using beta and gamma functions.

Learning Outcomes:

At the end of this unit, the student will be able to

- Understand beta and gamma functions and its relations (L2)
- Conclude the use of special function in evaluating definite integrals (L4)

Text Books:

- 1. B. S. Grewal, Higher Engineering Mathematics, 44/e, Khanna Publishers, 2017.
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, 10/e, John Wiley & Sons, 2011.

Reference Books:

- 1. R. K. Jain and S. R. K. Iyengar, Advanced Engineering Mathematics, 3/e, Alpha Science International Ltd., 2002.
- 2. George B. Thomas, Maurice D. Weir and Joel Hass, Thomas Calculus, 13/e, Pearson Publishers, 2013.
- 3. Glyn James, Advanced Modern Engineering Mathematics, 4/e, Pearson publishers, 2011.
- 4. Micheael Greenberg, Advanced Engineering Mathematics, 9th edition, Pearson edn
- 5. Dean G. Duffy, Advanced Engineering Mathematics with MATLAB, CRC Press
- 6. Peter O'neil, Advanced Engineering Mathematics, Cengage Learning.
- 7. R.L. Garg Nishu Gupta, Engineering Mathematics Volumes-I &II, Pearson Education
- 8. B. V. Ramana, Higher Engineering Mathematics, McGraw Hill Education

9. H. k Das, Er. RajnishVerma, Higher Engineering Mathematics, S. Chand.

10. N. Bali, M. Goyal, C. Watkins, Advanced Engineering Mathematics, Infinity Science Press.

Course Outcomes:

At the end of the course, the student will be able to

- Develop the use of matrix algebra techniques that is needed by engineers for practical applications (L6)
- Utilize mean value theorems to real life problems (L3)
- Familiarize with functions of several variables which is useful in optimization (L3)
- Students will also learn important tools of calculus in higher dimensions. Students will become familiar with 2- dimensional coordinate systems (L5)
- Students will become familiar with 3- dimensional coordinate systems and also learn the utilization of special functions

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ME)– I Sem L T P C

$\frac{1}{3}$ $\frac{1}{0}$ $\frac{1}{0}$ $\frac{1}{3}$

(20A51201T) ENGINEERING CHEMISTRY (Civil and Mechanical)

Course Objectives:

- To familiarize engineering chemistry and its applications
- To impart the concept of soft and hard waters, softening methods of hard water
- To train the students on the principles and applications of electrochemistry, polymers, surface chemistry, and cement

UNIT -1

Water Technology

Introduction –Soft Water and hardness of water, Estimation of hardness of water by EDTA Method -Boiler troubles –Priming, foaming, scale and sludge, Caustic embrittlement, Industrial water treatment – specifications for drinking water, Bureau of Indian Standards(BIS) and World health organization(WHO) standards, ion-exchange processes - desalination of brackish water, reverse osmosis (RO) and electrodialysis.

Learning outcomes:

At the end of this unit, the students will be able to

- List the differences between temporary and permanent hardness of water (L1)
- Explain the principles of reverse osmosis and electrodialysis. (L2)
- Compare quality of drinking water with BIS and WHO standards. (L2)
- Illustrate problems associated with hard water scale and sludge. (L2)
- Explain the working principles of different Industrial water treatment processes (L2)

UNIT -2

Electrochemistry and Applications:

Electrodes - concepts, electrochemical cell, Nernst equation, cell potential calculations.

Primary cells – Zinc-air battery, Secondary cells – Nickel-Cadmium (NiCad), and lithium ion batteriesworking of the batteries including cell reactions; Fuel cells, hydrogen-oxygen, methanol fuel cells – working of the cells.

Corrosion: Introduction to corrosion, electrochemical theory of corrosion, differential aeration cell corrosion, galvanic corrosion, metal oxide formation by dry electrochemical corrosion, Pilling Bedworth ratios and uses, **Factors affecting the corrosion**, cathodic and anodic protection, electroplating and electro less plating (Nickel and Copper).

Learning Outcomes:

At the end of this unit, the students will be able to

- Apply Nernst equation for calculating electrode and cell potentials (L3)
- Apply Pilling Bedworth rule for corrosion and corrosion prevention (L3)
- Demonstrate the corrosion prevention methods and factors affecting corrosion (L2)
- Compare different batteries and their applications (L2)

UNIT -3

Polymers and Fuel Chemistry:

Introduction to polymers, functionality of monomers, Mechanism of chain growth, step growth and coordination polymerization.

Thermoplastics and Thermo-setting plastics-: Preparation, properties and applications of poly styrene. PVC and Bakelite

Elastomers - Preparation, properties and applications of Buna S, Buna N, Thiokol

Fuels – Types of fuels, calorific value, numerical problems based on calorific value; Analysis of coal, Liquid Fuels refining of petroleum, fuels for IC engines, knocking and anti-knock agents, Octane and Cetane values, cracking of oils; alternative fuels- propane, methanol and ethanol, bio-fuels.

Learning Outcomes:

At the end of this unit, the students will be able to

- Explain different types of polymers and their applications (L2)
- Solve the numerical problems based on Calorific value(L3)
- Select suitable fuels for IC engines (L3)
- Explain calorific values, octane number, refining of petroleum and cracking of oils (L2)

UNIT-4

Advanced Engineering Materials

Composites- Definition, Constituents, Classification- Particle, Fibre and Structural reinforced composites, properties and Engineering applications

Refractories- Classification, Properties, Factors affecting the refractory materials and Applications. Lubricants- Classification, Functions of lubricants, Mechanism, Properties of lubricating oils – Viscosity, Viscosity Index, Flash point, Fire point, Cloud point, saponification and Applications. Building materials- Portland Cement, constituents, phases and reactivity of clinker, Setting and Hardening of cement.

Learning Outcomes:

At the end of this unit, the students will be able to

- Explain the constituents of Composites and its classification (L2)
- Identify the factors affecting the refractory material(L3)
- Illustrate the functions and properties of lubricants (L2)
- Demonstrate the phases and reactivity of concrete formation (L2)
- Identify the constituents of Portland cement (L3)
- Enumerate the reactions at setting and hardening of the cement (L3)

UNIT -5

Surface Chemistry and Applications:

Introduction to surface chemistry, colloids, micelle formation, synthesis of colloids (any two methods with examples), chemical and electrochemical methods (not more than two methods) of preparation of nanometals and metal oxides, stabilization of colloids and nanomaterials by stabilizing agents, solid-gas interface, solid-liquid interface, adsorption isotherm, BET equation (no derivation) applications of colloids and nanomaterials – catalysis, medicine, sensors.

Learning Outcomes:

At the end of this unit, the students will be able to

- Summarize the concepts of colloids, micelle and nanomaterials (L2)
- Explain the synthesis of colloids with examples (L2)
- Outline the preparation of nanomaterials and metal oxides (L2)
- Identify the application of colloids and nanomaterials in medicine, sensors and catalysis (L2)

Text Books:

- 1. Jain and Jain, Engineering Chemistry, 16/e, DhanpatRai, 2013.
- 2. Peter Atkins, Julio de Paula and James Keeler, Atkins' Physical Chemistry, 10/e, Oxford University Press, 2010.

Reference Books:

- 1. G.V.Subba Reddy, K.N.Jayaveera and C. Ramachandraiah, Engineering Chemistry, Mc Graw Hill, 2020.
- 2. Skoog and West, Principles of Instrumental Analysis, 6/e, Thomson, 2007.
- 3. H.F.W. Taylor, Cement Chemistry, 2/e, Thomas Telford Publications, 1997.
- 4. D.J. Shaw, Introduction to Colloids and Surface Chemistry, Butterworth-Heineman, 1992.

Course Outcomes:

At the end of the course, the students will be able to

- Demonstrate the corrosion prevention methods and factors affecting corrosion (L2)
- Explain the preparation, properties, and applications of thermoplastics & thermosetting, elastomers & conducting polymers. (L2)
- Explain calorific values, octane number, refining of petroleum and cracking of oils (L2)
- Explain the setting and hardening of cement and concrete phase (L2)
- Summarize the concepts of colloids, micelle and nanomaterials (L2).

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ME)– I Sem L T P C

$\frac{1}{3}$ $\begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array}$ $\begin{array}{c} 0 \\ 3 \\ \end{array}$

(20A05201T) C-PROGRAMMING & DATA STRUCTURES

(Common to All Branches of Engineering)

Course Objectives:

- To illustrate the basic concepts of C programming language.
- To discuss the concepts of Functions, Arrays, Pointers and Structures.
- To familiarize with Stack, Queue and Linked lists data structures.
- To explain the concepts of non-linear data structures like graphs and trees.
- To learn different types of searching and sorting techniques.

UNIT-1

Introduction to C Language - C language elements, variable declarations and data types, operators and expressions, decision statements - If and switch statements, loop control statements - while, for, do-while statements, arrays.

Learning outcomes:

At the end of this unit, the students will be able to

- Use C basic concepts to write simple C programs. (L3)
- Use iterative statements for writing the C programs (L3)
- Use arrays to process multiple homogeneous data. (L3)
- Test and execute the programs and correct syntax and logical errors. (L4)
- Translate algorithms into programs. (L4)
- Implement conditional branching, iteration and recursion. (L2)

UNIT – 2

Functions, types of functions, Recursion and argument passing, pointers, storage allocation, pointers to functions, expressions involving pointers, Storage classes – auto, register, static, extern, Structures, Unions, Strings, string handling functions, and Command line arguments.

Learning outcomes:

At the end of this unit, the students will be able to

- Writing structured programs using C Functions. (L5)
- Writing C programs using various storage classes to control variable access. (L5)
- Apply String handling functions and pointers. (L3)
- Use arrays, pointers and structures to formulate algorithms and write programs.(L3)

UNIT-3

Data Structures, Overview of data structures, stacks and queues, representation of a stack, stack related terms, operations on a stack, implementation of a stack, evaluation of arithmetic expressions, infix, prefix, and postfix notations, evaluation of postfix expression, conversion of expression from infix to postfix, recursion, queues - various positions of queue, representation of queue, insertion, deletion, searching operations.

Learning outcomes:

At the end of this unit, the students will be able to

- Describe the operations of Stack. (L2)
- Explain the different notations of arithmetic expression. (L5)
- Develop various operations on Queues. (L6)

UNIT - 4

Linked Lists – Singly linked list, dynamically linked stacks and queues, polynomials using singly linked lists, using circularly linked lists, insertion, deletion and searching operations, doubly linked lists and its operations, circular linked lists and its operations.

Learning outcomes:

At the end of this unit, the students will be able to

- Analyze various operations on singly linked list. (L4)
- Interpret operations of doubly linked lists. (L2)
- Apply various operations on Circular linked lists. (L6)

UNIT-5

Trees - Tree terminology, representation, Binary trees, representation, binary tree traversals. binary tree operations, **Graphs** - graph terminology, graph representation, elementary graph operations, Breadth First Search (BFS) and Depth First Search (DFS), connected components, spanning trees. **Searching and Sorting** – sequential search, binary search, exchange (bubble) sort, selection sort, insertion sort.

Learning outcomes:

At the end of this unit, the students will be able to

- Develop the representation of Tress. (L3)
- Identify the various Binary tree traversals. (L3)
- Illustrate different Graph traversals like BFS and DFS. (L2)
- Design the different sorting techniques (L6)
- Apply programming to solve searching and sorting problems. (L3)

Text Books:

- 1. The C Programming Language, Brian W Kernighan and Dennis M Ritchie, Second Edition, Prentice Hall Publication.
- 2. Fundamentals of Data Structures in C, Ellis Horowitz, SartajSahni, Susan Anderson-Freed, Computer Science Press.
- 3. Programming in C and Data Structures, J.R.Hanly, Ashok N. Kamthane and A. AnandaRao, Pearson Education.
- 4. B.A. Forouzon and R.F. Gilberg, "COMPUTER SCIENCE: A Structured Programming Approach Using C", Third edition, CENGAGE Learning, 2016.
- 5. Richard F. Gilberg & Behrouz A. Forouzan, "Data Structures: A Pseudocode Approach with C", Second Edition, CENGAGE Learning, 2011.

Reference Books:

- 1. Pradip Dey and Manas Ghosh, Programming in C, Oxford University Press, 2nd Edition 2011.
- 2. E. Balaguruswamy, "C and Data Structures", 4th Edition, Tata Mc Graw Hill.
- 3. A.K. Sharma, Computer Fundamentals and Programming in C, 2nd Edition, University Press.
- 4. M.T. Somashekara, "Problem Solving Using C", PHI, 2nd Edition 2009.

Course Outcomes:

- 1. Analyse the basic concepts of C Programming language. (L4)
- 2. Design applications in C, using functions, arrays, pointers and structures. (L6)
- 3. Apply the concepts of Stacks and Queues in solving the problems. (L3)
- 4. Explore various operations on Linked lists. (L5)
- 5. Demonstrate various tree traversals and graph traversal techniques. (L2)
- 6. Design searching and sorting methods (L3)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ME)– I Sem L T P C

3 0 0 3

(20A02101T) BASIC ELECTRICAL & ELECTRONICS ENGINEERING

(Civil, Mechanical, CSE, AI & DS,CSE (AI), CSE(IoT), CSE (Data Science), CSE(AI & ML), IT and Food Technology)

Part A: Basic Electrical Engineering

Course Objectives:

- To introduce basics of electric circuits.
- To teach DC and AC electrical circuit analysis.
- To explain working principles of transformers and electrical machines.
- To impart knowledge on Power system generation, transmission and distribution

UNIT -1

DC & AC Circuits:

Electrical circuit elements (R - L and C) - Kirchhoff laws - Series and parallel connection of resistances with DC excitation. Superposition Theorem - Representation of sinusoidal waveforms - peak and rms values - phasor representation - real power - reactive power - apparent power - power factor - Analysis of single-phase ac circuits consisting of RL - RC - RLC series circuits, Resonance.

Learning Outcomes

At the end of this unit, the student will be able to

- Recall Kirchoff laws
- Analyze simple electric circuits with DC excitation
- Apply network theorems to simple circuits
- Analyze single phase AC circuits consisting of series RL RC RLC combinations

UNIT -2

DC & AC Machines:

Principle and operation of DC Generator - EMF equations - OCC characteristics of DC generator – principle and operation of DC Motor – Performance Characteristics of DC Motor - Speed control of DC Motor – Principle and operation of Single Phase Transformer - OC and SC tests on transformer - Principle and operation of 3-phase AC machines [Elementary treatment only]

Learning Outcomes

At the end of this unit, the student will be able to

- Explain principle and operation of DC Generator & Motor.
- Perform speed control of DC Motor
- Explain operation of transformer and induction motor.
- Explain construction & working of induction motor DC motor

UNIT -3

Basics of Power Systems:

Layout & operation of Hydro, Thermal, Nuclear Stations - Solar & wind generating stations - Typical AC Power Supply scheme - Elements of Transmission line - Types of Distribution systems: Primary & Secondary distribution systems.

Learning Outcomes

At the end of this unit, the student will be able to

- Understand working operation of various generating stations
- Explain the types of Transmission and Distribution systems

Text Books:

- 1. D. P. Kothari and I. J. Nagrath "Basic Electrical Engineering" Tata McGraw Hill 2010.
- 2. V.K. Mehta & Rohit Mehta, "Principles of Power System" S.Chand 2018.

References:

- 1. L. S. Bobrow "Fundamentals of Electrical Engineering" Oxford University Press 2011.
- 2. E. Hughes "Electrical and Electronics Technology" Pearson 2010.
- 3. C.L. Wadhwa "Generation Distribution and Utilization of Electrical Energy", 3rd Edition, New Age International Publications.

Course Outcomes:

The student should be able to

- Apply concepts of KVL/KCL in solving DC circuits
- Understand and choose correct rating of a transformer for a specific application
- Illustrate working principles of DC Motor
- Identify type of electrical machine based on their operation
- Understand the basics of Power generation, Transmission and Distribution

Part 'B'- Electronics Engineering

Course Objectives

- Understand principles and terminology of electronics.
- Familiar with the theory, construction, and operation of electronic devices.
- Learn about biasing of BJTs and FETs.
- Design and construct amplifiers.
- Understand the concept & principles of logic devices.

Unit-1:

Diodes and Applications: Semiconductor Diode, Diode as a Switch& Rectifier, Half Wave and Full Wave Rectifiers with and without Filters; Operation and Applications of Zener Diode, LED, Photo Diode.

Transistor Characteristics: Bipolar Junction Transistor (BJT) – Construction, Operation, Amplifying Action, Common Base, Common Emitter and Common Collector Configurations, Operating Point, Biasing of Transistor Configuration; Field Effect Transistor (FET) – Construction, Characteristics of Junction FET, Concepts of Small Signal Amplifiers –CE & CC Amplifiers.

Learning outcomes:

At the end of this unit, the student will be able to

- Remember and understand the basic characteristics of semiconductor diode. (L1)
- Understand principle of operation of Zener diode and other special semiconductor diodes. (L1)
- Analyze BJT based biasing circuits. (L3)
- Design an amplifier using BJT based on the given specifications. (L4)

Unit-2:

Operational Amplifiers and Applications: Introduction to Op-Amp, Differential Amplifier Configurations, CMRR, PSRR, Slew Rate; Block Diagram, Pin Configuration of 741 Op-Amp, Characteristics of Ideal Op-Amp, Concept of Virtual Ground; Op-Amp Applications - Inverting, Non-Inverting, Summing and Difference Amplifiers, Voltage Follower, Comparator, Differentiator, Integrator.

Learning outcomes:

At the end of this unit, the student will be able to

- Describe operation of Op-Amp based linear application circuits, converters, amplifiers and non-linear circuits. (L2)
- Analyze Op-Amp based comparator, differentiator and integrator circuits. (L3)

Unit-3:

Digital Electronics: Logic Gates, Simple combinational circuits–Half and Full Adders, BCD Adder.Latches and Flip-Flops (S-R, JK andD), Shift Registers and Counters.Introduction to Microcontrollers and their applications (Block diagram approach only).

Learning outcomes:

At the end of this unit, the student will be able to

- Explain the functionality of logic gates. (L2)
- Apply basic laws and De Morgan's theorems to simplify Boolean expressions. (L3)
- Analyze standard combinational and sequential circuits. (L4)
- Distinguish between 8085 & 8086 microprocessors also summarize features of a microprocessor. (L5)

Text Books:

- 1. R.L.Boylestad& Louis Nashlesky, Electronic Devices & Circuit Theory, Pearson Education, 2007.
- 2. Ramakanth A. Gayakwad, Op-Amps & Linear ICs, 4thEdition, Pearson, 2017.
- 3. R. P. Jain, Modern Digital Electronics, 3rd Edition, Tata Mcgraw Hill, 2003.

4. Raj Kamal, Microcontrollers: Architecture, Programming, Interfacing and System Design, 2nd Edition, Pearson, 2012.

Reference Books:

- 1. SantiramKal, Basic Electronics- Devices, Circuits and IT Fundamentals, Prentice Hall, India, 2002.
- 2. R. S. Sedha, A Text Book of Electronic Devices and Circuits, S.Chand& Co,2010.
- 3. R. T. Paynter, Introductory Electronic Devices & Circuits Conventional Flow Version, Pearson Education, 2009.

Course Outcomes:

After the completion of the course students will able to

- Explain the theory, construction, and operation of electronic devices.
- Apply the concept of science and mathematics to explain the working of diodes and its applications, working of transistor and to solve the simple problems based on the applications
- Analyze small signal amplifier circuits to find the amplifier parameters
- Design small signal amplifiers using proper biasing circuits to fix up proper Q point.
- Distinguish features of different active devices including Microprocessors.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ME)– I Sem L T P C

(20A03202) ENGINEERING WORKSHOP

(Common to All Branches of Engineering)

Course Objective:

To familiarize students with wood working, sheet metal operations, fitting and electrical house wiring skills

List of Topics

Wood Working:

Familiarity with different types of woods and tools used in wood working and make following joints

a) Half - Lap joint b) Mortise and Tenon joint c) Corner Dovetail joint or Bridle joint

Sheet Metal Working:

Familiarity with different types of tools used in sheet metal working, Developments of following sheet metal job from GI sheets

a) Tapered tray b) Conical funnel c) Elbow pipe d) Brazing

Fitting:

Familiarity with different types of tools used in fitting and do the following fitting exercises a) V-fit b) Dovetail fit c) Semi-circular fit d) Bicycle tire puncture and change of two wheeler tyre

Electrical Wiring:

Familiarities with different types of basic electrical circuits and make the following connections

- a) Parallel and series b) Two way switch c) Godown lighting
- d) Tube light e) Three phase motor f) Soldering of wires

Course Outcomes:

After completion of this lab the student will be able to

- Apply wood working skills in real world applications. (13)
- Build different objects with metal sheets in real world applications. (13)
- Apply fitting operations in various applications. (13)
- Apply different types of basic electric circuit connections. (13)
- Use soldering and brazing techniques. (l2)

Note: In each section a minimum of three exercises are to be carried out.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ME) – II Sem L T P C

0 0 3 1.5

(20A05202) IT WORKSHOP

(Common to All Branches of Engineering)

Course Objectives:

- To make the students know about the internal parts of a computer, assembling and dissembling a computer from the parts, preparing a computer for use by installing the operating system
- To provide Technical training to the students on Productivity tools like Word processors, Spreadsheets, Presentations and LAteX
- To learn about Networking of computers and use Internet facility for Browsing and Searching

Preparing your Computer

Task 1:

Learn about Computer: Identify the internal parts of a computer, and its peripherals. Represent the same in the form of diagrams including Block diagram of a computer. Write specifications for each part of a computer including peripherals and specification of Desktop computer. Submit it in the form of a report.

Task 2:

Assembling a Computer: Disassemble and assemble the PC back to working condition. Students should be able to trouble shoot the computer and identify working and non-working parts. Student should identify the problem correctly by various methods

Task 3:

Install Operating system: Student should install Linux on the computer. Student may install another operating system (including proprietary software) and make the system dual boot or multi boot. Students should record the entire installation process.

Task 4:

Operating system features: Students should record the various features that are supported by the operating system(s) installed. They have to submit a report on it. Students should be able to access CD/DVD drives, write CD/DVDs, access pen drives, print files, etc. Students should install new application software and record the installation process.

Networking and Internet

Task 5:

Networking: Students should connect two computers directly using a cable or wireless connectivity and share information. Students should connect two or more computers using switch/hub and share information. Crimpling activity, logical configuration etc. should be done by the student. The entire process has to be documented.

Task 6:

Browsing Internet: Student should access the Internet for Browsing. Students should search the Internet for required information. Students should be able to create e-mail account and send email. They should get acquaintance with applications like Facebook, skype etc. If Intranet mailing facility is available in the organization, then students should share the information using it. If the operating system supports sending messages to multiple users (LINUX supports it) in the same network, then it should be done by the student. Students are expected to submit the information about different browsers available, their features, and search process using different natural languages, and creating email account.

Task 7:

Antivirus: Students should download freely available Antivirus software, install it and use it to check for threats to the computer being used. Students should submit information about the features of the antivirus used, installation process, about virus definitions, virus engine etc.

Productivity tools

Task 8:

Word Processor: Students should be able to create documents using the word processor tool. Some of the tasks that are to be performed are inserting and deleting the characters, words and lines, Alignment of the lines, Inserting header and Footer, changing the font, changing the colour, including images and tables in the word file, making page setup, copy and paste block of text, images, tables, linking the images which are present in other directory, formatting paragraphs, spell checking, etc. Students should be able to prepare project cover pages, content sheet and chapter pages at the end of the task using the features studied. Students should submit a user manual of the word processor considered, Image Manipulation tools.

Task 9:

Presentations: creating, opening, saving and running the presentations, selecting the style for slides, formatting the slides with different fonts, colours, creating charts and tables, inserting and deleting text, graphics and animations, bulleting and numbering, hyperlinking, running the slide show, setting the timing for slide show.

Task 10:

Spreadsheet: Students should be able to create, open, save the application documents and format them as per the requirement. Some of the tasks that may be practiced are Managing the worksheet environment, creating cell data, inserting and deleting cell data, format cells, adjust the cell size, applying formulas and functions, preparing charts, sorting cells. Students should submit a user manual of the Spreadsheet

Task 11:

LateX: Introduction to Latex and its installation and different IDEs. Creating first document using Latex, using content into sections using article and book class of LaTeX. Styling Pages: reviewing and customizing different paper sizes and formats. Formatting text (styles, size, alignment, colors and adding bullets and numbered items, inserting mathematical symbols, and images, etc.). Creating basic tables, adding simple and dashed borders, merging rows and columns. Referencing and Indexing: cross-referencing (refer to sections, table, images), bibliography (references).

References:

- 1. Introduction to Computers, Peter Norton, McGraw Hill
- 2. MOS study guide for word, Excel, Powerpoint& Outlook Exams, Joan Lambert, Joyce Cox, PHI.
- 3. Introduction to Information Technology, ITL Education Solutions limited, Pearson Education.
- 4. Networking your computers and devices, Rusen, PHI
- 5. Trouble shooting, Maintaining & Repairing PCs, Bigelows, TMH
- 6. Lamport L. LATEX: a document preparation system: user's guide and reference manual. Addison-wesley; 1994.

Course Outcomes:

- Disassemble and Assemble a Personal Computer and prepare the computer ready to use.
- Prepare the Documents using Word processors and Prepare spread sheets for calculations .using excel and also the documents using LAteX.
- Prepare Slide presentations using the presentation tool.
- Interconnect two or more computers for information sharing.
- Access the Internet and Browse it to obtain the required information.

Note: Use open source tools for implementation of the above exercises.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ME)– I Sem L T P C

0 0 3 1.5

(20A51201P) ENGINEERING CHEMISTRY LAB (Common to Civil and Mechanical)

Course Objectives:

• To Verify the fundamental concepts with experiments

List of Experiments:

- 1. Determination of Hardness of a groundwater sample.
- 2. pH metric titration of (i) strong acid vs. strong base, (ii) weak acid vs. strong base
- 3. Determination of cell constant and conductance of solutions
- 4. Potentiometry determination of redox potentials and emfs
- 5. Determination of Strength of an acid in Pb-Acid battery
- 6. Preparation of a polymer
- 7. Determination of percentage of Iron in Cement sample by colorimetry
- 8. Estimation of Calcium in port land Cement
- 9. Preparation of nanomaterials by precipitation.
- 10. Adsorption of acetic acid by charcoal
- 11. Determination of percentage Moisture content in a coal sample
- 12. Determination of Viscosity of lubricating oil by Redwood Viscometer 1 &2
- 13. Determination of Calorific value of gases by Junker's gas Calorimeter

Course Outcomes:

At the end of the course, the students will be able to

- Determine the cell constant and conductance of solutions (L3)
- Prepare advanced polymer materials (L2)
- Determine the physical properties like surface tension, adsorption and viscosity (L3)
- Estimate the Iron and Calcium in cement (L3)
- Calculate the hardness of water (L4)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ME)– I Sem L T P C

0 0 3 1.5

(20A05201P) C-PROGRAMMING & DATA STRUCTURES LAB

(Common to All Branches of Engineering)

Course Objectives:

- To get familiar with the basic concepts of C programming.
- To design programs using arrays, strings, pointers and structures.
- To illustrate the use of Stacks and Queues
- To apply different operations on linked lists.
- To demonstrate Binary search tree traversal techniques.
- To design searching and sorting techniques.

Week l

Write C programs that use both recursive and non-recursive functions

- i) To find the factorial of a given integer.
- ii) To find the GCD (greatest common divisor) of two given integers.
- iii) To solve Towers of Hanoi problem.

Week 2

- a) Write a C program to find both the largest and smallest number in a list of integers.
- b) Write a C program that uses functions to perform the following:i) Addition of Two Matrices ii) Multiplication of Two Matrices

Week 3

- a) Write a C program that uses functions to perform the following operations:
 - i) To insert a sub-string in to a given main string from a given position.
 - ii) To delete n characters from a given position in a given string.

Week 4

- a) Write a C program that displays the position or index in the string S where the string T begins, or -1 if S doesn't contain T.
- b) Write a C program to count the lines, words and characters in a given text.

Week 5

- a) Write a C Program to perform various arithmetic operations on pointer variables.
- b) Write a C Program to demonstrate the following parameter passing mechanisms:i) call-by-valueii) call-by-reference

Week 6

Write a C program that uses functions to perform the following operations:

- i) Reading a complex number
- ii) Writing a complex number

- iii) Addition of two complex numbers
- iv) Multiplication of two complex numbers

(Note: represent complex number using a structure.)

Week 7

Write C programs that implement stack (its operations) using

- i) Arrays
- ii) Pointers

Week 8

Write C programs that implement Queue (its operations) using

- i) Arrays
- ii) Pointers

Week 9

Write a C program that uses Stack operations to perform the following:

- i) Converting infix expression into postfix expression
- ii) Evaluating the postfix expression

Week 10

Write a C program that uses functions to perform the following operations on singly linked list.

i) Creation ii) Insertion iii) Deletion iv) Traversal

Week 11

Write a C program that uses functions to perform the following operations on Doubly linkedlist.

i) Creation ii) Insertion iii) Deletion iv) Traversal

Week 12

Write a C program that uses functions to perform the following operations on circular linkedlist.

i) Creation ii) Insertion iii) Deletion iv) Traversal

Week 13

Write a C program that uses functions to perform the following:

- i) Creating a Binary Tree of integers
- ii) Traversing the above binary tree in preorder, inorder and postorder.

Week 14

Write C programs that use both recursive and non-recursive functions to perform the following searching operations for a key value in a given list of integers:

- i) Linear search
- ii) Binary search

Week 15

Write a C program that implements the following sorting methods to sort a given list of integers in ascending order

- i) Bubble sort
- ii) Selection sort
- iii) Insertion sort

Text Books:

- 1. Programming in C and Data Structures, J.R.Hanly, Ashok N. Kamthane and A. Ananda Rao, Pearson Education.
- 2. B.A. Forouzon and R.F. Gilberg, "COMPUTER SCIENCE: A Structured Programming Approach Using C", Third edition, CENGAGE Learning, 2016.
- 3. Richard F. Gilberg & Behrouz A. Forouzan, "Data Structures: A Pseudocode Approach with C", Second Edition, CENGAGE Learning, 2011.

Reference Books:

- 1. PradipDey and ManasGhosh, Programming in C, Oxford University Press, 2nd Edition 2011.
- 2. E.Balaguruswamy, "C and Data Structures", 4th Edition, Tata Mc Graw Hill.
- 3. A.K.Sharma, Computer Fundamentals and Programming in C, 2nd Edition, University Press.
- 4. M.T.Somashekara, "Problem Solving Using C", PHI, 2nd Edition 2009.

Course Outcomes

- Demonstrate basic concepts of C programming language. (L2)
- Develop C programs using functions, arrays, structures and pointers. (L6)
- Illustrate the concepts Stacks and Queues. (L2)
- Design operations on Linked lists. (L6)
- Apply various Binary tree traversal techniques. (L3)
- Develop searching and sorting methods. (L6)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ME)– I Sem L T P

L T P C 0 0 2 1.5

(20A02101P) BASIC ELECTRICAL & ELECTRONICS ENGINEERING LAB

(Civil, Mechanical, CSE, AI & DS,CSE (AI), CSE(IoT), CSE (Data Science), CSE(AI & ML), IT and Food Technology)

Part A: Electrical Engineering Lab

Course Objectives:

- To Verify Kirchoff's laws and Superposition theorem
- To learn performance characteristics of DC Machines.
- To perform various tests on 1- Phase Transformer.
- To Study the I V Characteristics of Solar PV Cell

List of experiments: -

- 1. Verification of Kirchhoff laws.
- 2. Verification of Superposition Theorem.
- 3. Magnetization characteristics of a DC Shunt Generator.
- 4. Speed control of DC Shunt Motor.
- 5. OC & SC test of 1 Phase Transformer.
- 6. Load test on 1-Phase Transformer.
- 7. I V Characteristics of Solar PV cell
- 8. Brake test on DC Shunt Motor.

Course Outcomes:

After completing the course, the student will be able to

- Understand Kirchoff's Laws & Superposition theorem.
- Analyze the various characteristics on DC Machines by conducting various tests.
- Analyze I V Characteristics of PV Cell
- Apply the knowledge to perform various tests on 1-phase transformer

Part B: Electronics Engineering Lab

Course Objectives:

- To verify the theoretical concepts practically from all the experiments.
- To analyze the characteristics of Diodes, BJT, MOSFET, UJT.
- To design the amplifier circuits from the given specifications.
- Exposed to linear and digital integrated circuits.

List Of Experiments:

- 1. PN Junction diode characteristics A) Forward bias B) Reverse bias.
- 2. Zener diode characteristics and Zener as voltage Regulator.
- 3. Full Wave Rectifier with & without filter.

- 4. Wave Shaping Circuits. (Clippers & Clampers)
- 5. Input & Output characteristics of Transistor in CB / CE configuration.
- 6. Frequency response of CE amplifier.
- 7. Inverting and Non-inverting amplifiers using Op-AMPs.
- 8. Verification of Truth Table of AND, OR, NOT, NAND, NOR, Ex-OR, Ex-NOR gates using ICs.
- 9. Verification of Truth Tables of S-R, J-K& D flip flops using respective ICs.

Tools / Equipment Required: DC Power supplies, Multi meters, DC Ammeters, DC Voltmeters, AC Voltmeters, CROs, all the required active devices.

Course outcomes:

- Learn the characteristics of basic electronic devices like PN junction diode, Zener diode & BJT.
- Construct the given circuit in the lab
- Analyze the application of diode as rectifiers, clippers and clampers and other circuits.
- Design simple electronic circuits and verify its functioning.

Note: Minimum Six Experiments to be performed in each section.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ME)– II Sem L T P C

(20A54201) DIFFERENTIAL EQUATIONS AND VECTOR CALCULUS

(Common to Civil, EEE, Mechanical, ECE and Food Technology)

Course Objectives:

- To enlighten the learners in the concept of differential equations and multivariable calculus.
- To furnish the learners with basic concepts and techniques at plus two level to lead them into advanced level by handling various real world applications.

UNIT -1

Linear differential equations of higher order (Constant Coefficients)

Definitions, homogenous and non-homogenous, complimentaryfunction, generalsolution, particular integral,Wronskean, method of variation of parameters.Simultaneous linear equations, Applications to L-C-R Circuit problems and Mass spring system.

Learning Outcomes:

At the end of this unit, the student will be able to

- Identify the essential characteristics of linear differential equations with constant coefficients (L3)
- Solve the linear differential equations with constant coefficients by appropriate method (L3)
- Classify and interpret the solutions of linear differential equations (L3)
- Formulate and solve the higher order differential equation by analyzing physical situations (L3)

UNIT 2:

Partial Differential Equations

Introduction and formation of Partial Differential Equations by elimination of arbitrary constants and arbitrary functions, solutions of first order equations using Lagrange's method.

Learning Outcomes:

At the end of this unit, the student will be able to

- Apply a range of techniques to find solutions of standard pdes (L3)
- Outline the basic properties of standard PDEs (L2)

UNIT -3

Applications of Partial Differential Equations

Classification of PDE, method of separation of variables for second order equations. Applications of Partial Differential Equations: One dimensional Wave equation, One dimensional Heat equation.

Learning Outcomes:

At the end of this unit, the student will be able to

- Calcify the PDE (L3)
- Learn the applications of PDEs (L2)

UNIT-4

Vector differentiation

Scalar and vector point functions, vector operator del, del applies to scalar point functions-Gradient, del applied to vector point functions-Divergence and Curl, vector identities.

Learning Outcomes:

At the end of this unit, the student will be able to

- Apply del to Scalar and vector point functions (L3)
- Illustrate the physical interpretation of Gradient, Divergence and Curl (L3)

UNIT -5

Vector integration

Line integral-circulation-work done, surface integral-flux, Green's theorem in the plane (without proof), Stoke's theorem (without proof), volume integral, Divergence theorem (without proof) and applications of these theorems.

Learning Outcomes:

At the end of this unit, the student will be able to

- Find the work done in moving a particle along the path over a force field (L4)
- Evaluate the rates of fluid flow along and across curves (L4)
- Apply Green's, Stokes and Divergence theorem in evaluation of double and triple integrals (L3)

Text Books:

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 10/e, John Wiley & Sons, 2011.
- 2. B.S. Grewal, Higher Engineering Mathematics, 44/e, Khanna publishers, 2017.

Reference Books:

- 1. Dennis G. Zill and Warren S. Wright, Advanced Engineering Mathematics, Jones and Bartlett, 2011.
- 2. Michael Greenberg, Advanced Engineering Mathematics, 2/e, Pearson, 2018
- 3. George B.Thomas, Maurice D. Weir and Joel Hass, Thomas Calculus, 13/e, Pearson Publishers, 2013.
- 4. R.K.Jain and S.R.K.Iyengar, Advanced Engineering Mathematics, 3/e, Alpha Science International Ltd., 2002.
- 5. Glyn James, Advanced Modern Engineering Mathematics, 4/e, Pearson publishers, 2011.
- 6. Micheael Greenberg, Advanced Engineering Mathematics, 9th edition, Pearson edn
- 7. Dean G. Duffy, Advanced engineering mathematics with MATLAB, CRC Press
- 8. Peter O'neil, Advanced Engineering Mathematics, Cengage Learning.
- 9. R.L. GargNishu Gupta, Engineering Mathematics Volumes-I &II, Pearson Education
- 10. B. V. Ramana, Higher Engineering Mathematics, McGraw Hill Education.
- 11. H. k Das, Er. RajnishVerma, Higher Engineering Mathematics, S. Chand.
- 12. N. Bali, M. Goyal, C. Watkins, Advanced Engineering Mathematics, Infinity Science Press.

Course Outcomes:

At the end of the course, the student will be able to

- Solve the differential equations related to various engineering fields (L6)
- Identify solution methods for partial differential equations that model physical processes (L3)
- Interpret the physical meaning of different operators such as gradient, curl and divergence (L5)
- Estimate the work done against a field, circulation and flux using vector calculus (L6)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ME)– II Sem L T P C 3 0 0 3

(20A56101T) ENGINEERING PHYSICS

(Common to Civil Mechanical and Food Technology)

Course Objectives

- To make a bridge between the physics in school and engineering courses.
- To identify the importance of the optical phenomenon i.e. interference, diffraction and polarization related to its Engineering applications.
- To understand the mechanisms of emission of light, the use of lasers as light sources for low and high energy applications, study of propagation of light wave through optical fibres along with engineering applications
- To open new avenues of knowledge in dielectric and magnetic materials which find potential in the emerging micro device applications. Considering the significance of micro miniaturization of electronic devices and significance of low dimensional materials, the basic concepts of nano materials, their properties and applications in modern emerging technologies are elicited.
- To familiarize the concepts of theoretical acoustics to practical use in engineering field. To explain the significance of ultrasound and its application in NDT for diversified engineering application.
- To enlighten the periodic arrangement of atoms in crystals, Bragg's law and to provide fundamentals related to structural analysis through powder diffraction method.

UNIT-I

Wave Optics

Interference- Principle of superposition – Interference of light – Conditions for sustained interference – Interference in thin films (Reflection Geometry) – Colors in thin films – Newton's Rings-Determination of wavelength and refractive index.

Diffraction- Introduction – Fresnel and Fraunhofer diffraction – Fraunhofer diffraction due to single slit, double slit and N-slits (qualitative) – Grating spectrum.

Polarization- Introduction – Types of polarization – Polarization by reflection, refraction and double refraction – Nicol's Prism – Half wave and Quarter wave plates with applications.

Learning Outcomes:

At the end of this unit, the student will be able to

- Explain the need of coherent sources and the conditions for sustained interference (L2)
- Identify engineering applications of interference (L3)
- Analyze the differences between interference and diffraction with applications (L4)
- Illustrate the concept of polarization of light and its applications (L2)
- Classify ordinary polarized light and extraordinary polarized light (L2)

UNIT-II

Lasers and Fiber optics

Lasers- Introduction – Characteristics of laser – Spontaneous and Stimulated emission of radiation – Einstein's coefficients – Population inversion – Lasing action – Pumping mechanisms – Nd-YAG laser – He-Ne laser – Applications of lasers.

Fiber optics- Introduction – Principle of optical fiber – Acceptance Angle – Numerical Aperture – Classification of optical fibers based on refractive index profile and modes – Propagation of electromagnetic wave through optical fibers – Propagation Losses (Qualitative) – Applications.

Learning Outcomes:

At the end of this unit, the student will be able to

- Understand the basic concepts of LASER light Sources (L2)
- Apply the concepts to learn the types of lasers (L3)
- Identifies the Engineering applications of lasers (L2)
- Explain the working principle of optical fibers (L2)
- Classify optical fibers based on refractive index profile and mode of propagation (L2)
- Identify the applications of optical fibers in various fields (L2)

UNIT III

Engineering Materials

Dielectric Materials- Introduction – Dielectric polarization – Dielectric polarizability, Susceptibility and Dielectric constant – Types of polarizations: Electronic, Ionic and Orientation polarization (Qualitative) – Lorentz internal field – Clausius-Mossotti equation.

Magnetic Materials- Introduction – Magnetic dipole moment – Magnetization – Magnetic susceptibility and permeability – Origin of permanent magnetic moment – Classification of magnetic materials: Dia, para & Ferro – Domain concept of Ferromagnetism (Qualitative) – Hysteresis – Soft and Hard magnetic materials.

Nanomaterials- Introduction – Surface area and quantum confinement – Physical properties: electrical and magnetic properties – Synthesis of nanomaterials: Top-down: Ball Milling – Bottom-up: Chemical Vapour Deposition – Applications of nanomaterials.

Learning Outcomes:

At the end of this unit, the student will be able to

- Explain the concept of dielectric constant and polarization in dielectric materials (L2)
- Summarize various types of polarization of dielectrics (L2)
- Interpret Lorentz field and Claussius- Mosotti relation in dielectrics(L2)
- Classify the magnetic materials based on susceptibility and their temperature dependence (L2)
- Explain the applications of dielectric and magnetic materials (L2)
- Apply the concept of magnetism to magnetic devices (L3)
- Identify the nano size dependent properties of nanomaterials (L2)
- Illustrate the methods for the synthesis and characterization of nanomaterials (L2)
- Apply the basic properties of nanomaterials in various Engineering branches (L3).

UNIT-IV

Acoustics and Ultrasonics

Acoustics- Introduction – Requirements of acoustically good hall – Reverberation – Reverberation time – Sabine's formula (Derivation using growth and decay method) – Absorption coefficient and its determination – Factors affecting acoustics of buildings and their remedies.

Ultrasonics- Introduction – Properties – Production by magnetostriction and piezoelectric methods – Detection – Acoustic grating – Non Destructive Testing – Pulse echo system through transmission and reflection modes – Applications.

Learning Outcomes:

At the end of this unit, the student will be able to

- Explain how sound is propagated in buildings (L2)
- Analyze acoustic properties of typically used materials in buildings (L4)
- Recognize sound level disruptors and their use in architectural acoustics (L2)
- Identify the use of ultrasonics in different fields (L3)

UNIT-V

Crystallography and X-ray diffraction

Crystallography- Space lattice, Basis, unit cell and lattice parameters – Bravais Lattice – Crystal systems – Packing fraction – Coordination number – Packing fraction of SC, BCC & FCC – Miller indices – Separation between successive (hkl) planes.

X-Ray Diffraction- Bragg's law – Bragg's X-ray diffractometer – Crystal structure determination by Powder method.

Learning Outcomes:

At the end of this unit, the student will be able to

- Classify various crystal systems (L2)
- Identify different planes in the crystal structure (L3)
- Analyze the crystalline structure by Bragg's X-ray diffractometer (L4)
- Apply powder method to measure the crystallinity of a solid (L4)

Prescribed Text books:

1. Engineering Physics – Dr. M.N. Avadhanulu & Dr. P.G. Kshirsagar, S. Chand and Company

2. Engineering physics – D.K. Battacharya and Poonam Tandon, Oxford University press.

Reference Books:

- 1. Engineering Physics Sanjay D. Jain, D. Sahasrambudhe and Girish, University Press
- 2. Engineering Physics K. Thyagarajan, McGraw Hill Publishers
- 3. Engineering Physics D K Pandey, S. Chaturvedi, Cengage Learning
- 4. Engineering Physics M.R. Srinivasan, New Age Publications

Course Outcomes

- Study the different realms of physics and their applications in both scientific and technological systems through physical optics. (L2)
- Identify the wave properties of light and the interaction of energy with the matter (L3).
- Asses the electromagnetic wave propagation and its power in different media (L5).
- Understands the response of dielectric and magnetic materials to the applied electric and magnetic fields. (L3)
- Elucidates the importance of nano materials along with their engineering applications. (L5)
- Explain the basic concepts of acoustics and ultrasonics. (L2)
- Apply the concept of NDT to material testing. (L3)
- Study the important properties of crystals like the presence of long-range order, periodicity and structure determination using X-ray diffraction technique. (L5)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ME)– II Sem L T P C

3 0 0 3

(20A52101T) COMMUNICATIVE ENGLISH

(Common to All Branches of Engineering)

Course Objectives

- Facilitate effective listening skills for better comprehension of academic lectures and English spoken by native speakers
- Focus on appropriate reading strategies for comprehension of various academic texts and authentic materials
- Help improve speaking skills through participation in activities such as role plays, discussions and structured talks/oral presentations
- Impart effective strategies for good writing and demonstrate the same in summarizing, writing well organized essays, record and report useful information
- Provide knowledge of grammatical structures and vocabulary and encourage their appropriate use in speech and writing

UNIT -1

Lesson: On the Conduct of Life: William Hazlitt

Listening: Identifying the topic, the context and specific pieces of information by listening to short audio texts and answering a series of questions. **Speaking:** Asking and answering general questions on familiar topics such as home, family, work, studies and interests; introducing oneself and others. **Reading:** Skimming to get the main idea of a text; scanning to look for specific pieces of information. **Reading for Writing :**Beginnings and endings of paragraphs - introducing the topic, summarizing the main idea and/or providing a transition to the next paragraph. **Grammar and Vocabulary:** Parts of Speech, Content words and function words; word forms: verbs, nouns, adjectives and adverbs; nouns: countable and uncountable; singular and plural; basic sentence structures; simple question form - wh-questions; word order in sentences.

Learning Outcomes

At the end of the module, the learners will be able to

- Understand social or transactional dialogues spoken by native speakers of English and identify the context, topic, and pieces of specific information
- Ask and answer general questions on familiar topics and introduce oneself/others
- Employ suitable strategies for skimming and scanning to get the general idea of a text and locate specific information
- Recognize paragraph structure and be able to match beginnings/endings/headings with paragraphs
- Form sentences using proper grammatical structures and correct word forms

UNIT -2

Lesson: The Brook: Alfred Tennyson

Listening: Answering a series of questions about main idea and supporting ideas after listening to audio texts. **Speaking:** Discussion in pairs/small groups on specific topics followed by short structured talks. **Reading:** Identifying sequence of ideas; recognizing verbal techniques that help to link the ideas in a paragraph together. **Writing:** Paragraph writing (specific topics) using suitable cohesive devices;

mechanics of writing - punctuation, capital letters. **Grammar and Vocabulary:** Cohesive devices - linkers, sign posts and transition signals; use of articles and zero article; prepositions.

Learning Outcomes

At the end of the module, the learners will be able to

- Comprehend short talks on general topics
- Participate in informal discussions and speak clearly on a specific topic using suitable discourse markers
- Understand the use of cohesive devices for better reading comprehension
- Write well structured paragraphs on specific topics
- Identify basic errors of grammar/ usage and make necessary corrections in short texts

UNIT -3

Lesson: The Death Trap: Saki

Listening: Listening for global comprehension and summarizing what is listened to. **Speaking:** Discussing specific topics in pairs or small groups and reporting what is discussed **Reading:** Reading a text in detail by making basic inferences -recognizing and interpreting specific context clues; strategies to use text clues for comprehension. **Writing:** Summarizing, Paragraph Writing **Grammar and Vocabulary:** Verbs - tenses; subject-verb agreement; direct and indirect speech, reporting verbs for academic purposes.

Learning Outcomes

At the end of the module, the learners will be able to

- Comprehend short talks and summarize the content with clarity and precision
- Participate in informal discussions and report what is discussed
- Infer meanings of unfamiliar words using contextual clues
- Write summaries based on global comprehension of reading/listening texts
- Use correct tense forms, appropriate structures and a range of reporting verbs in speech and writing

UNIT-4

Lesson: Innovation: Muhammad Yunus

Listening: Making predictions while listening to conversations/ transactional dialogues without video; listening with video. **Speaking:** Role plays for practice of conversational English in academic contexts (formal and informal) - asking for and giving information/directions. **Reading:** Studying the use of graphic elements in texts to convey information, reveal trends/patterns/relationships, communicate processes or display complicated data. **Writing:** Letter Writing: Official Letters/Report Writing **Grammar and Vocabulary:** Quantifying expressions - adjectives and adverbs; comparing and contrasting; Voice - Active & Passive Voice

Learning Outcomes

At the end of the module, the learners will be able to

- Infer and predict about content of spoken discourse
- Understand verbal and non-verbal features of communication and hold formal/informal conversations

- Interpret graphic elements used in academic texts
- Produce a coherent paragraph interpreting a figure/graph/chart/table
- Use language appropriate for description and interpretation of graphical elements

UNIT -5

Lesson: Politics and the English Language: George Orwell

Listening: Identifying key terms, understanding concepts and answering a series of relevant questions that test comprehension. Speaking: Formal oral presentations on topics from academic contexts - without the use of PPT slides. Reading: Reading for comprehension. Writing: Writing structured essays on specific topics using suitable claims and evidences. Grammar and Vocabulary: Editing short texts –identifying and correcting common errors in grammar and usage (articles, prepositions, tenses, subject verb agreement)

Learning Outcomes

At the end of the module, the learners will be able to

- Take notes while listening to a talk/lecture and make use of them to answer questions
- Make formal oral presentations using effective strategies
- Comprehend, discuss and respond to academic texts orally and in writing
- Produce a well-organized essay with adequate support and detail
- Edit short texts by correcting common errors

Text Book:

1. Language and Life: A Skills Approach- I Edition 2019, Orient Black Swan

Reference Books:

- 1. Bailey, Stephen. Academic writing: A handbook for international students. Routledge, 2014.
- 2. Chase, Becky Tarver. Pathways: Listening, Speaking and Critical Thinking. Heinley ELT; 2nd Edition, 2018.
- 3. Raymond Murphy's English Grammar in Use Fourth Edition (2012) E-book
- 4. Hewings, Martin. Cambridge Academic English (B2). CUP, 2012.
- 5. Oxford Learners Dictionary, 12th Edition, 2011
- 6. Norman Lewis Word Power Made Easy- The Complete Handbook for Building a Superior Vocabulary (2014)
- 7. Speed Reading with the Right Brain: Learn to Read Ideas Instead of Just Words by David Butler

Course Outcomes

- Retrieve the knowledge of basic grammatical concepts
- Understand the context, topic, and pieces of specific information from social or transactional dialogues spoken by native speakers of English
- Apply grammatical structures to formulate sentences and correct word forms
- Analyze discourse markers to speak clearly on a specific topic in informal discussions
- Evaluate reading/listening texts and to write summaries based on global comprehension of these texts.
- Create a coherent paragraph interpreting a figure/graph/chart/table

Web links

www.englishclub.com www.easyworldofenglish.com www.languageguide.org/english/ www.bbc.co.uk/learningenglish www.eslpod.com/index.html www.myenglishpages.com

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ME)– II Sem L T P C

3 0 0 3

(20A03201T) MATERIAL SCIENCE & ENGINEERING

Course Objectives

- To teach the principles of physical metallurgy, i.e. crystallography of metals, constitution of alloys, phase diagrams.
- Expose commercially important metals and alloys (both ferrous and non ferrous) with engineering constraints.
- Explain the methods to change the properties of materials through heat treatment processes
- Familiarize properties and applications of ceramics, polymers and composite materials.
- Demonstrate the fundamental properties of nano-materials and their applications.

UNIT I

Structure of Metals: Crystal Structures: Unit cells, Metallic crystal structures, Imperfection in solids: Point, Line, interstitial and volume defects; dislocation strengthening mechanisms and slip systems, critically resolved shear stress.

Constitution of Alloys: Necessity of Alloying, substitutional and interstitial solid solutions- Phase diagrams: Interpretation of binary phase diagrams and microstructure development; eutectic, peritectic, peritectoid and monotectic reactions. Iron-Iron-carbide diagram and microstructural aspects of ferrite, cementite, austenite, ledeburite, and cast iron.

Learning Outcomes:

At the end of this unit the student will be able to

- Understand the importance of material science in engineering.(12)
- Recall the definitions and terminology of crystallography. (11)
- Distinguish metals and alloys. (14)
- Make use of the principles of construction of binary phase diagrams. (13)
- Identify various invariant reactions in binary phase diagrams. (13)
- Know the concept of metallography in studying the microstructures of metals and alloys. (12)

UNIT II

Steels:

Plain carbon steels, use and limitations of plain carbon steels. AISI& BIS classification of steels. Classification of alloys steels. Microstructure, properties and applications of alloy steels-stainless steels and tool steels.

Cast irons:

Microstructure, properties and applications of white cast iron, malleable cast iron, grey cast iron, nodular cast iron and alloy cast irons.

Learning Outcomes:

At the end of this unit the student will be able to

- Classify various types of steels, their properties and applications. (l2)
- Identify various types of cast irons, their properties and applications. (13)
- Compare steels and cast irons and their limitations in applications. (13)

UNIT III

Heat Treatment of Steels: Annealing, tempering, normalizing and hardening, isothermal transformation diagrams for $Fe-Fe_3C$ alloys and microstructure development. Continuous cooling curves and interpretation of final microstructures and properties- austempering, martempering, case hardening - carburizing, nitriding, cyaniding, carbo-nitriding, flame and induction hardening, and vacuum and plasma hardening

Learning Outcomes:

At the end of this unit the student will be able to

- Understand the importance of iron iron carbide phase diagram. (12)
- Know the influence of heat treatment in modification of properties of steels. (12)
- Develop a heat treatment cycle based on properties required. (13)
- Comprehend the principles of surface hardening methods. (12)

UNIT IV

Non-ferrous Metals and Alloys: Microstructure, properties and applications of copper, aluminium, titanium, nickel and their alloys. Study of Al-Cu phase diagram

Learning Outcomes:

At the end of this unit the student will be able to

- Understand the importance of non-ferrous metals and alloys in engineering applications. (12)
- Demonstrate various properties and applications of non-ferrous alloys. (14)
- Differentiate between hardening of ferrous and non-ferrous alloys. (14)

UNIT V

Ceramics, Polymers and Composites: Structure, properties and applications of ceramics, polymers and composites. Introduction to super alloys and nanomaterials.

Learning Outcomes:

At the end of this unit the student will be able to

- Understand the properties of ceramics and their applications. (12)
- Summarize the properties of polymers and composites and their use. (12)
- Interpret the properties of nano materials and their applications. (12)
- Identify the difference between the micro and nano scale materials and their uses. (L3)

Course Outcomes:

After completing the course, the student will be able to

- Explain the principles of binary phases. (l2)
- Select steels and cast irons for a given application. (13)
- Apply heat treatment to different applications. (13)
- Utilize nonferrous metals and alloys in engineering. (13)
- Choose composites for various applications. (13)
- Assess the properties of nano-scale materials and their applications. (12)
- Differentiate between hardening of ferrous and non-ferrous alloys. (L4)

Text Book(s)

- 1. V.Raghavan, Material Science and Engineering, 5/e, Prentice Hall of India, 2004.
- 2. R.Balasubramaniam, Callister's Material Science and Engineering, 2/e, Wiley India, 2014.

References

- 1. Y. Lakhtin, Engineering Physical Metallurgy, University Press of the Pacific, 2000.
- 2. S.H.Avner, Introduction to Physical Metallurgy, 2/e, Tata McGraw-Hill, 1997.
- 3. L.H.Van Vlack, Elements of Material Science and Engineering, 6/e, Pearson Education, 2008.
- 4. George E.Dieter, Mechanical Metallurgy, 3/e, McGraw-Hill, 2013.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ME)– II Sem L T P/D C

1 0 0/2 2

(20A03101T) ENGINEERING DRAWING

(Common to All Branches of Engineering)

Course Objectives:

- Bring awareness that Engineering Drawing is the Language of Engineers.
- Familiarize how industry communicates technical information.
- Teach the practices for accuracy and clarity in presenting the technical information.
- Develop the engineering imagination essential for successful design.

Unit: I

Introduction to Engineering Drawing: Principles of Engineering Drawing and its significance-Conventions in drawing-lettering - BIS conventions.

a) Conic sections including the rectangular hyperbola- general method only,

b) Cycloid, epicycloids and hypocycloid c) Involutes

Learning Outcomes:

At the end of this unit the student will be able to

- Understand the significance of engineering drawing
- Know the conventions used in the engineering drawing
- Identify the curves obtained in different conic sections
- Draw different curves such as cycloid, involute and hyperbola

Unit: II

Projection of points, lines and planes: Projection of points in any quadrant, lines inclined to one or both planes, finding true lengths, angle made by line. Projections of regular plane surfaces.

Learning Outcomes:

At the end of this unit the student will be able to

- Understand the meaning of projection
- Know how to draw the projections of points, lines
- Differentiate between projected length and true length
- Find the true length of the lines

Unit: III

Projections of solids: Projections of regular solids inclined to one or both planes by rotational or auxiliary views method.

Learning Outcomes:

At the end of this unit the student will be able to

- Understand the procedure to draw projection of solids
- Differentiate between rotational method and auxillary view method.
- Draw the projection of solid inclined to one plain
- Draw the projection of solids inclined to both the plains

Unit: IV

Sections of solids: Section planes and sectional view of right regular solids- prism, cylinder, pyramid and cone. True shapes of the sections.

Learning Outcomes:

At the end of this unit the student will be able to

- Understand different sectional views of regular solids
- Obtain the true shapes of the sections of prism
- Draw the sectional views of prism, cylinder, pyramid and cone

Unit: V

Development of surfaces: Development of surfaces of right regular solids-prism, cylinder, pyramid, cone and their sectional parts.

Learning Outcomes:

At the end of this unit the student will be able to

- Understand the meaning of development of surfaces
- Draw the development of regular solids such as prism, cylinder, pyramid and cone
- Obtain the development of sectional parts of regular shapes

Text Books:

- 1. K.L.Narayana & P.Kannaiah, Engineering Drawing, 3/e, Scitech Publishers, Chennai, 2012.
- 2. N.D.Bhatt, Engineering Drawing, 53/e, Charotar Publishers, 2016.

Reference Books:

- 1. Dhanajay A Jolhe, Engineering Drawing, Tata McGraw-Hill, Copy Right, 2009
- 2. Venugopal, Engineering Drawing and Graphics, 3/e, New Age Publishers, 2000
- 3. Shah and Rana, Engineering Drawing, 2/e, Pearson Education, 2009
- 4. K.C.John, Engineering Graphics, 2/e, PHI, 2013
- 5. Basant Agarwal & C.M.Agarwal, Engineering Drawing, Tata McGraw-Hill, Copy Right, 2008.

Course Outcomes:

After completing the course, the student will be able to

- Draw various curves applied in engineering. (12)
- Show projections of solids and sections graphically. (12)
- Draw the development of surfaces of solids. (13)

Additional Sources

Youtube: http-sewor, Carleton.cag, kardos/88403/drawings.html conic sections-online, red woods.edu

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ME) – I Sem L T P C 0 0 2 1

(20A03101P) ENGINEERING GRAPHICS LAB

(Common to All Branches of Engineering)

Course Objectives:

- Instruct the utility of drafting & modeling packages in orthographic and isometric drawings.
- Train the usage of 2D and 3D modeling.
- Instruct graphical representation of machine components.

Computer Aided Drafting:

Introduction to AutoCAD: Basic drawing and editing commands: line, circle, rectangle, erase, view, undo, redo, snap, object editing, moving, copying, rotating, scaling, mirroring, layers, templates, polylines, trimming, extending, stretching, fillets, arrays, dimensions.

Dimensioning principles and conventional representations.

Orthographic Projections: Systems of projections, conventions and application to orthographic projections - simple objects.

Isometric Projections: Principles of isometric projection- Isometric scale; Isometric views: lines, planes, simple solids.

Text Books:

- 1. K. Venugopal, V.Prabhu Raja, Engineering Drawing + Auto Cad, New Age International Publishers.
- 2. Kulkarni D.M, AP Rastogi and AK Sarkar, Engineering Graphics with Auto Cad, PHI Learning, Eastern Economy editions.

Reference Books:

- 1. T. Jayapoovan, Engineering Graphics using Auto Cad, Vikas Publishing House
- 2. K.L.Narayana & P.Kannaiah, Engineering Drawing, 3/e, Scitech Publishers, Chennai, 2012.
- 3. Linkan Sagar, BPB Publications, Auto Cad 2018 Training Guide.
- 4. K.C.John, Engineering Graphics, 2/e, PHI, 2013
- 5. Basant Agarwal & C.M.Agarwal, Engineering Drawing, Tata McGraw-Hill, Copy Right, 2008.

Course Outcomes:

After completing the course, the student will be able to

- Use computers as a drafting tool. (L2)
- Draw isometric and orthographic drawings using CAD packages. (L3)

Additional Sources

1. Youtube: http-sewor,Carleton.cag, kardos/88403/drawings.html conic sections-online, red woods.edu

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (ME)– II Sem

L T P C 0 0 3 1.5

(20A52101P) COMMUNICATIVE ENGLISH LAB

(Common to All Branches of Engineering)

Course Objectives

- students will be exposed to a variety of self instructional, learner friendly modes of language learning
- students will learn better pronunciation through stress, intonation and rhythm
- students will be trained to use language effectively to face interviews, group discussions, public speaking
- students will be initiated into greater use of the computer in resume preparation, report writing, format making etc

List of Topics

- 1. Phonetics
- 2. Reading comprehension
- 3. Describing objects/places/persons
- 4. Role Play or Conversational Practice
- 5. JAM
- 6. Etiquettes of Telephonic Communication
- 7. Information Transfer
- 8. Note Making and Note Taking
- **9.** E-mail Writing
- 10. Group Discussions-1
- 11. Resume Writing
- 12. Debates
- 13. Oral Presentations
- 14. Poster Presentation
- 15. Interviews Skills-1

Suggested Software

Orel, Walden Infotech, Young India Films

Reference Books

- 1. Bailey, Stephen. Academic writing: A handbook for international students. Routledge, 2014.
- 2. Chase, Becky Tarver. Pathways: Listening, Speaking and Critical Thinking. Heinley ELT; 2nd Edition, 2018.
- 3. Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Educational.
- 4. Hewings, Martin. Cambridge Academic English (B2). CUP, 2012.
- 5. A Textbook of English Phonetics for Indian Students by T.Balasubramanyam

Web Links

www.esl-lab.com www.englishmedialab.com www.englishinteractive.net

Course Outcomes

After completing the course, the student will be able to

- Listening and repeating the sounds of English Language
- Understand the different aspects of the English language
- proficiency with emphasis on LSRW skills
- Apply communication skills through various language learning activities
- Analyze the English speech sounds, stress, rhythm, intonation and syllable
- Division for better listening and speaking comprehension.
- Evaluate and exhibit acceptable etiquette essential in social and professional settings
- Create awareness on mother tongue influence and neutralize it in order to
- Improve fluency in spoken English.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ME)– II Sem L T P C

0 0 3 1.5

(20A56101P) ENGINEERING PHYSICS LAB

(Common to Civil, Mechanical and Food Technology)

Course Objectives:

- Understand the role of Optical fiber parameters in engineering applications.
- Recognize the significance of laser by studying its characteristics and its application in finding the particle size.
- Illustrates the magnetic and dielectric materials applications.
- Identifies the various sensor applications.

List of Topics

- 1. Determine the thickness of the wire using wedge shape method
- 2. Determination of the radius of curvature of the lens by Newton's ring method
- 3. Determination of wavelength by plane diffraction grating method
- 4. Determination of dispersive power of prism.
- 5. Determination of wavelength of LASER light using diffraction grating.
- 6. Determination of particle size using LASER.
- 7. To determine the numerical aperture of a given optical fiber and hence to find its acceptance angle
- 8. Determination of dielectric constant by charging and discharging method.
- 9. Magnetic field along the axis of a circular coil carrying current –Stewart Gee's method.
- 10. Measurement of magnetic susceptibility by Gouy's method
- 11. Study the variation of B versus H by magnetizing the magnetic material (B-H curve)
- 12. Determination of ultrasonic velocity in liquid (Acoustic grating)
- 13. Rigidity modulus of material of a wire-dynamic method (Torsional pendulum)
- 14. Sonometer: Verification of the three laws of stretched strings
- 15. Determination of spring constant of springs using Coupled Oscillator

References:

- 1. S. Balasubramanian, M.N. Srinivasan "A Text book of Practical Physics"- S Chand Publishers, 2017.
- 2. http://vlab.amrita.edu/index.php -Virtual Labs, Amrita University

Course Outcomes:

After completing the course, the student will be able to

- Operate various optical instruments (L2)
- estimate wavelength of laser and particles size using laser(L2)
- evaluate the acceptance angle of an optical fiber and numerical aperture (L3)
- estimate the susceptibility and related magnetic parameters of magnetic materials (L2)
- plot the intensity of the magnetic field of circular coil carrying current with distance (L3)
- determine magnetic susceptibility of the material and its losses by B-H curve (L3)
- apply the concepts of ultrasonics by acoustic grating (L2)

Note Out of 15 experiments any 12 experiments (minimum 10) must be performed in a semester.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ME)– II Sem L T P C

0 0 3 1.5

(20A03201P) MATERIAL SCIENCE & ENGINEERING LAB

Course Objectives:

- To understand the microstructure and hardness of engineering materials.
- To explain grain boundaries and grain sizes of different engineering materials.

List of Experiments:

- 1. Metallography sample preparation
- 2. Microstructure of pure metals Iron, copper and aluminum as per ASTM standards
- 3. Microstructure of low carbon steel, mild steel and high carbon microstructure of cast irons.
- 4. Microstructure of non-ferrous alloys aluminum, copper, titanium, nickel and their alloys.
- 5. Hardenability of steels by Jominy End Quench Test.
- 6. Microstructure of heat treated steels.
- 7. Hardness of various untreated and treated steels.
- 8. Microstructure of ceramics, polymeric materials.
- 9. Microstructure of super alloy and nano-materials.
- 10. Hardness of ceramics, super alloys, nano-materials and polymeric materials (one sample on each)

Course Outcomes:

The student is able to

- Differentiate various microstructures of ferrous and non-ferrous metals and alloys. (14)
- Visualize grains and grain boundaries. (13)
- Importance of hardening of steels. (12)
- Evaluate hardness of treated and untreated steels. (14)
- Differentiate hardness of super alloys, ceramics and polymeric materials

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ME) – II Sem L T P C

3 0 0 0

(20A52201) UNIVERSAL HUMAN VALUES (Common to all branches)

Course Objective:

The objective of the course is four fold:

- Development of a holistic perspective based on self-exploration about themselves (human being), family, society and nature/existence.
- Understanding (or developing clarity) of the harmony in the human being, family, society and nature/existence
- Strengthening of self-reflection.
- Development of commitment and courage to act.

COURSE TOPICS:

The course has 28 lectures and 14 practice sessions in 5 modules:

Unit 1:

Course Introduction - Need, Basic Guidelines, Content and Process for Value Education

- Purpose and motivation for the course, recapitulation from Universal Human Values-I
- Self-Exploration–what is it? Its content and process; 'Natural Acceptance' and Experiential Validation- as the process for self-exploration
- Continuous Happiness and Prosperity- A look at basic Human Aspirations
- Right understanding, Relationship and Physical Facility- the basic requirements for fulfilment of aspirations of every human being with their correct priority
- Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario
- Method to fulfil the above human aspirations: understanding and living in harmony at various levels.

Include practice sessions to discuss natural acceptance in human being as the innate acceptance for living with responsibility (living in relationship, harmony and co-existence) rather than as arbitrariness in choice based on liking-disliking

Unit 2:

Understanding Harmony in the Human Being - Harmony in Myself!

- Understanding human being as a co-existence of the sentient 'I' and the material 'Body'
- Understanding the needs of Self ('I') and 'Body' happiness and physical facility
- Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer)

- Understanding the characteristics and activities of 'I' and harmony in 'I'
- Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail
- Programs to ensure Sanyam and Health.

Include practice sessions to discuss the role others have played in making material goods available to me. Identifying from one's own life. Differentiate between prosperity and accumulation. Discuss program for ensuring health vs dealing with disease

Unit 3:

Understanding Harmony in the Family and Society- Harmony in Human-Human Relationship

- Understanding values in human-human relationship; meaning of Justice (nine universal values in relationships) and program for its fulfilment to ensure mutual happiness; Trust and Respect as the foundational values of relationship
- Understanding the meaning of Trust; Difference between intention and competence
- Understanding the meaning of Respect, Difference between respect and differentiation; the other salient values in relationship
- Understanding the harmony in the society (society being an extension of family): Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals
- Visualizing a universal harmonious order in society- Undivided Society, Universal Orderfrom family to world family.

Include practice sessions to reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education etc. Gratitude as a universal value in relationships. Discuss with scenarios. Elicit examples from students' lives

Unit 4:

Understanding Harmony in the Nature and Existence - Whole existence as Coexistence

- Understanding the harmony in the Nature
- Interconnectedness and mutual fulfilment among the four orders of naturerecyclability and self-regulation in nature
- Understanding Existence as Co-existence of mutually interacting units in all- pervasive space
- Holistic perception of harmony at all levels of existence.

Include practice sessions to discuss human being as cause of imbalance in nature (film "Home" can be used), pollution, depletion of resources and role of technology etc.

Unit 5:

Implications of the above Holistic Understanding of Harmony on Professional Ethics

- Natural acceptance of human values
- Definitiveness of Ethical Human Conduct
- Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order
- Competence in professional ethics: a. Ability to utilize the professional competence for augmenting universal human order b. Ability to identify the scope and characteristics of people friendly and eco-friendly production systems, c. Ability to identify and develop appropriate technologies and management patterns for above production systems.
- Case studies of typical holistic technologies, management models and production systems
- Strategy for transition from the present state to Universal Human Order: a. At the level of individual: as socially and ecologically responsible engineers, technologists and managers b. At the level of society: as mutually enriching institutions and organizations
- Sum up.

Include practice Exercises and Case Studies will be taken up in Practice (tutorial) Sessions eg. To discuss the conduct as an engineer or scientist etc.

Text Book

- 1. R R Gaur, R Asthana, G P Bagaria, "A Foundation Course in Human Values and Professional Ethics", 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-47-1
- R R Gaur, R Asthana, G P Bagaria, "Teachers' Manual for A Foundation Course in Human Values and Professional Ethics", 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-53-2

Reference Books

- 1. Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya Prakashan, Amar kantak, 1999.
- 2. A. N. Tripathi, "Human Values", New Age Intl. Publishers, New Delhi, 2004.
- 3. The Story of Stuff (Book).
- 4. Mohandas Karamchand Gandhi "The Story of My Experiments with Truth"
- 5. E. FSchumacher. "Small is Beautiful"
- 6. Slow is Beautiful –Cecile Andrews
- 7. J C Kumarappa "Economy of Permanence"
- 8. Pandit Sunderlal "Bharat Mein Angreji Raj"
- 9. Dharampal, "Rediscovering India"
- 10. Mohandas K. Gandhi, "Hind Swaraj or Indian Home Rule"
- 11. India Wins Freedom Maulana Abdul Kalam Azad
- 12. Vivekananda Romain Rolland(English)
- 13. Gandhi Romain Rolland (English)

MOE OF CONDUCT (L-T-P-C 2-1-0-2)

Lecture hours are to be used for interactive discussion, placing the proposals about the topics at hand and motivating students to reflect, explore and verify them. Tutorial hours are to be used for practice sessions.

While analyzing and discussing the topic, the faculty mentor's role is in pointing to essential elements to help in sorting them out from the surface elements. In other words, help the students explore the important or critical elements.

In the discussions, particularly during practice sessions (tutorials), the mentor encourages the student to connect with one's own self and do self-observation, self-reflection and self-exploration.

Scenarios may be used to initiate discussion. The student is encouraged to take up "ordinary" situations rather than" extra-ordinary" situations. Such observations and their analyses are shared and discussed with other students and faculty mentor, in a group sitting.

Tutorials (experiments or practical) are important for the course. The difference is that the laboratory is everyday life, and practicals are how you behave and work in real life. Depending on the nature of topics, worksheets, home assignments and/or activities are included. The practice sessions (tutorials) would also provide support to a student in performing actions commensurate to his/her beliefs. It is intended that this would lead to development of commitment, namely behaving and working based on basic human values.

OUTCOME OF THECOURSE:

By the end of the course,

- Students are expected to become more aware of themselves, and their surroundings (family, society, nature)
- They would become more responsible in life, and in handling problems with sustainable solutions, while keeping human relationships and human nature in mind.
- They would have better critical ability.
- They would also become sensitive to their commitment towards what they have understood (human values, human relationship and human society).
- It is hoped that they would be able to apply what they have learnt to their own self in different day-to-day settings in real life, at least a beginning would be made in this direction.

MECHANICAL ENGINEERING

II B.TECH.

		Semester-III					
S.No.	Course Code	Course Name	Category	Hours per wee		week	Credits
				L	Т	P	-
1.	20A54303	Complex variables, Transforms and Application of PDE	BS	3	0	0	3
2.	20A01302T	Fluid Mechanics & Hydraulic Machines	PC	3	0	0	3
3.	20A03301T	Manufacturing Processes	PC	3	0	0	3
4.	20A03302	Thermodynamics	PC	3	0	0	3
5.	20A01305T	Mechanics of Materials	ES	3	0	0	3
6.	20A01302P	Fluid Mechanics &Hydraulic Machines Lab	PC	0	0	3	1.5
7.	20A03301P	Manufacturing Processes Lab	PC	0	0	3	1.5
8.	20A01305P	Mechanics of Materials Lab	ES	0	0	3	1.5
9.	20A05305	Skill oriented course – I Application Development with Python	SC	1	0	2	2
10.	20A99201	Mandatory noncredit course – II Environmental Science	MC	3	0	0	0
		Total					21.5

		Semester-IV					
S.No.	Course	Course Name	Category	y Hours per we		week	Credits
	Code			L	Т	P	
1.	20A54402	Numerical Methods & Probability Theory	BS	3	0	0	3
2.	20A03401T	Applied Thermodynamics	PC	3	0	0	3
3.	20A03402	Kinematics of Machinery	PC	3	0	0	3
4.	20A03403T	Manufacturing Technology	PC	3	0	0	3
5.	20A52301 20A52302 20A52303	Humanities Elective- I Managerial Economics & Financial Analysis Organizational Behavior Business Environment	HS	3	0	0	3
6.	20A03401P	Applied Thermodynamics Lab	PC	0	0	3	1.5
7.	20A03403P	Manufacturing Technology Lab	PC	0	0	3	1.5
8.	20A03404	Computer Aided Machine Drawing	PC	0	0	3	1.5
9.	20A52401	Skill oriented course – II Soft skills	SC	1	0	2	2
10.	20A99401	Mandatory noncredit course – III Design Thinking for Innovation	MC	2	1	0	0
11.	20A99301	NSS/NCC/NSO Activities	-	0	0	2	0
	1	Total	1	1	1		21.5
Com	munity Servic	e Internship/Project (Mandatory) for 6 weel	ks duration	during	summ	er va	cation

MECHANICAL ENGINEERING

Note:

- 1. Eligible and interested students can register either for Honors or for a Minor in IV Semester as per the guidelines issued by the University
- 2. Students shall register for NCC/NSS/NSO activities and will be required to participate in an activity for two hours in a week during fourth semester.
- 3. Lateral entry students shall undergo a bridge course in Mathematics during third semester

Online Learning Resources:

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR (Established by Govt. of A.P., ACT No.30 of 2008) ANANTHAPURAMU – 515 002 (A.P) INDIA

20A54303 Equations 3 0 0 3 Pre-requisite Functions, Differentiations and Integration Semester III Course Objectives: This course aims at providing the student to acquire the knowledge on the calculus of functions of complex variables. The aim is to analyze the solutions of partial differential equations. Course Outcomes (CO): Student will be able to • • Understand the analyticity of complex functions and conformal mappings. • • Understand the usage of laplace transforms. • • Understand the usage of laplace transforms. • • Understand the usage of laplace transforms. • • Formulatc/solve/classify the solutions of partial differential equations and also find the solution of one-dimensional wave equation and heat equation. UNIT - I Complex Variable – Differentiation: 9 Hrs Introduction to functions, analytic functions (soponential, trigonometric, logarithm), harmonic functions, finding harmonic conjugate-construction of analytic function by Milne Thomson method- conformal mappings-standard transformations (e ¹ / ₂ , kz) Mobius transformations (bilinear) and their properties. UNIT - II Complex Variable – Integration: 9 Hrs Line integral-Contour integratian, Cauchy's intt		MECHANICAL ENGIN					
Pre-requisite Functions, Differentiations and Integration Semester III Course Objectives: This course aims at providing the student to acquire the knowledge on the calculus of functions of complex variables. The aim is to analyze the solutions of partial differential equations. Course Outcomes (CO): Student will be able to • • • Understand the analyticity of complex functions and conformal mappings. • • • Apply cauchy's integral formula and cauchy's integral theorem to evaluate improper integrals along contours. • • • Understand the usage of laplace transforms. • • • Understand the usage of laplace transforms. • • • Understand the usage of laplace transforms. • • • Omplex Variable – Differentiation: 9 Hrs Introduction to functions of complex variable-concept of Limit & continuity- Differentiation; 20 Hrs Cauchy-Riemann equations, analytic functions (et arc): A: A: A) Mobius transformations (bilinear) and their properties. 9 Hrs Line integral-Contour integration, Cauchy's integral theorem, (without proof); power series expansions of partial differential equations. 9 Hrs Line integral-Contour integration, Cauchy's integral involving	Course Code		ial Differential		Τ		C
Integration Course Objectives: Course Objectives: Course Objectives: Course Outcomes (CO): Student will be able to •	20A54303	Equations		3	0	0	3
Integration Course Objectives: Course Objectives: Course Objectives: Course Outcomes (CO): Student will be able to •			~				
Course Objectives: This course aims at providing the student to acquire the knowledge on the calculus of functions of somplex variables. The aim is to analyze the solutions of partial differential equations. Course Outcomes (CO): Student will be able to • Understand the analyticity of complex functions and conformal mappings. • Apply cauchy's integral formula and cauchy's integral theorem to evaluate improper integrals along contours. • Understand the usage of laplace transforms. • Evaluate the fourier series expansion of periodic functions. • Formulate/Solve/classify the solutions of partial differential equations and also find the solution of one-dimensional wave equation and heat equation. UNIT - 1 Complex Variable – Differentiation: Introduction to functions of complex variable-concept of Limit & continuity – Differentiation, Cauchy-Riemann equations, analytic functions (exponential, trigonometric, logarithm), harmonic functions for ding harmonic conjugate-construction of analytic functions fulline Thomsons method-Conformal mappings-standard transformations (e [*] , - kz) Mobius transformations (bilinear) and their roperties. UNIT - 1 Complex Variable – Integration: 9 Hrs Line integral-Contour integration, Cauchy's integral theorem, Cauchy Integral formula, Liouville's heorem (without proof), power series expansions: 9 Hrs Line integral-Contour integration, Cauchy's integral theorem - Laplace Transform – Inverse ransform of standard functions- seristence of Laplace Transform – Inverse ransform –	Pre-requisite		Semester		L	II	
This course aims at providing the student to acquire the knowledge on the calculus of functions of complex variables. The aim is to analyze the solutions of partial differential equations. Course Outcomes (CO): Student will be able to • Understand the analyticity of complex functions and conformal mappings. • Apply cauchy's integral formula and cauchy's integral theorem to evaluate improper integrals along contours. • Understand the usage of laplace transforms. • Evaluate the fourier series expansion of periodic functions. • Formulate/solve/classify the solutions of partial differential equations and also find the solution of one-dimensional wave equation and heat equation. UNIT - I Complex Variable – Differentiation : Cauchy-Riemann equations, analytic functions (szoponential, trigonometric, logarithm), harmonic functions, singular-construction of analytic function by Milne Thomson method-Conformal mappings-standard transformations (e ⁺ x ⁺ , kz) Mobius transformations (bilinear) and their orporeties. UNIT - II Complex Variable – Integration : 9 Hrs Line integral-Contour integration, Cauchy's integral theorem, Cauchy Integral formula, Liouville's heorem (without proof) and Maximum-Modulus theorem (without proof), power series expansions: 7 Hrs Line integral-Contour integration: 9 Hrs 2 Hrs Cauchy Reinde 9 Hrs 2 Has Line integral-Contour integration of definite integral involving sine and cosine, Evaluation of corier series,		Integration					
complex variables. The aim is to analyze the solutions of partial differential equations. Course Outcomes (CO): Student will be able to • Understand the analyticity of complex functions and conformal mappings. • Apply cauchy's integral formula and cauchy's integral theorem to evaluate improper integrals along contours. • Understand the usage of laplace transforms. • Evaluate the fourier series expansion of periodic functions. • Formulate/solve/classify the solutions of partial differential equations and also find the solution of one-dimensional wave equation and heat equation. UNT - I Complex Variable - Differentiation: 9 Hrs Cauchy-Riemann equations, analytic functions (exponential, trigonometric, logarithm), harmonic conjugate-construction of analytic function by Milne Thomson method-Conformal mappings-standard transformations (e ² , ¹ / _x kz) Mobius transformations (bilinear) and their properties. 9 Hrs UNT -II Complex Variable - Integration: 9 Hrs UNT -III Complex Variable and theorem (without proof) power series expansions: faylor's series, zeros of analytic functions, singularitics, Laurent's series; Residues, Cauchy Residue theorem (without proof). Evaluation of definite integral involving sine and cosine, Evaluation of certain improper integrals (around unit circle, semi circle with f(2) not having poles on real axis). UNT - III Laplace Transforms 9 Hrs Definition-Laplace transform of standard functions-existence of Laplace Transform - Inverse ransform		· 1· .1 . 1	1 (1 1	1	6.6		
Course Outcomes (CO): Student will be able to • Understand the analyticity of complex functions and conformal mappings. • Apply cauchy's integral formula and cauchy's integral theorem to evaluate improper integrals along contours. • Understand the usage of laplace transforms. • Evaluate the fourier series expansion of periodic functions. • Formulate/solve/classify the solutions of partial differential equations and also find the solution of one-dimensional wave equation and heat equation. UNIT -1 Complex Variable - Differentiation: 9 Hrs Introduction to functions of complex variable-concept of Limit & continuity- Differentiation. Cauchy-Riemann equations, analytic functions (exponential, trigonometric, logarithm), harmonic functions, finding harmonic conjugate-construction of analytic functions by Milne Thomson method-conformal mappings-standard transformations (e [*] / _x , kz) Mobius transformations (bilinear) and their properties. UNIT -1 Complex Variable - Integration: 9 Hrs UNIT -1 Complex Variable - Integration: 9 Hrs UNIT -1 Complex Variable - Integration cauchy integral formula, Liouville's heorem (without proof) and Maximum-Modulus theorem (without proof); power series expansions: Taylor's series, zeros of analytic functions, singularities, Laurent's series; Residues, Cauchy Residue heorem (without proof). Evaluation of definit integral integral - Unit sep function octant, Evaluation of definiti integral integral - Unit sep function oceratin improper integrals (around unit circl					of fun	iction	s of
 Understand the analyticity of complex functions and conformal mappings. Apply cauchy's integral formula and cauchy's integral theorem to evaluate improper integrals along contours. Understand the usage of laplace transforms. Evaluate the fourier series expansion of periodic functions. Formulate/solve/classify the solutions of partial differential equations and also find the solution of one-dimensional wave equation and heat equation. UNIT - I Complex Variable – Differentiation: 9 Hrs Introduction to functions of complex variable-concept of Limit & continuity- Differentiation, Cauchy-Riemann equations, analytic functions (exponential, trigonometric, logarithm), harmonic functions, finding harmonic conjugate-construction of analytic function by Milne Thomson method-Conformal mappings-standard transformations (e[*]_x- k2) Mobius transformations (bilinear) and their orperties. UNIT - II Complex Variable – Integration: 9 Hrs Line integral-Contour integration, Cauchy's integral theorem, Cauchy Integral formula, Liouville's heorem (without proof), evaluation of definite integral involving sine and cosine, Evaluation of zertain improper integrals (around unit circle, semi circle with f(z) not having poles on real axis). UNIT - III Laplace Transforms 9 9 Hrs Definition-Laplace transform of standard functions-existence of Laplace Transform – Inverse marsform – First shifting Theorem, Transforms of derivatives and integrals – Unit step function - Second shifting theorem – Dirac's delta function – convolution theorem – Laplace transform of Periodic function. Jifferentiation and integration of transforms – solving Initial value problems to ordinary differential equations with constant coefficients using Laplace transforms 5 or decomplex transform – Solving Initial value problems to ordinary differential equations (Luplace equations). UNIT - IV Fourier series <l< td=""><td>complex variables. I</td><th>he aim is to analyze the solutions of partial c</th><td>differential equati</td><td>ons.</td><td></td><td></td><td></td></l<>	complex variables. I	he aim is to analyze the solutions of partial c	differential equati	ons.			
 Understand the analyticity of complex functions and conformal mappings. Apply cauchy's integral formula and cauchy's integral theorem to evaluate improper integrals along contours. Understand the usage of laplace transforms. Evaluate the fourier series expansion of periodic functions. Formulate/solve/classify the solutions of partial differential equations and also find the solution of one-dimensional wave equation and heat equation. UNIT - I Complex Variable – Differentiation: 9 Hrs Introduction to functions of complex variable-concept of Limit & continuity- Differentiation, Cauchy-Riemann equations, analytic functions (exponential, trigonometric, logarithm), harmonic functions, finding harmonic conjugate-construction of analytic function by Milne Thomson method-Conformal mappings-standard transformations (e[*]_x- k2) Mobius transformations (bilinear) and their orperties. UNIT - II Complex Variable – Integration: 9 Hrs Line integral-Contour integration, Cauchy's integral theorem, Cauchy Integral formula, Liouville's heorem (without proof), evaluation of definite integral involving sine and cosine, Evaluation of zertain improper integrals (around unit circle, semi circle with f(z) not having poles on real axis). UNIT - III Laplace Transforms 9 9 Hrs Definition-Laplace transform of standard functions-existence of Laplace Transform – Inverse marsform – First shifting Theorem, Transforms of derivatives and integrals – Unit step function - Second shifting theorem – Dirac's delta function – convolution theorem – Laplace transform of Periodic function. Jifferentiation and integration of transforms – solving Initial value problems to ordinary differential equations with constant coefficients using Laplace transforms 5 or decomplex transform – Solving Initial value problems to ordinary differential equations (Luplace equations). UNIT - IV Fourier series <l< td=""><td>Course Outcomes (</td><th>CO) Student will be able to</th><td></td><td></td><td></td><td></td><td></td></l<>	Course Outcomes (CO) Student will be able to					
 Apply cauchy's integral formula and cauchy's integral theorem to evaluate improper integrals along contours. Understand the usage of laplace transforms. Evaluate the fourier series expansion of periodic functions. Formulate/solve/classify the solutions of partial differential equations and also find the solution of one-dimensional wave equation and heat equation. UNIT - I Complex Variable – Differentiation: 9 Hrs Introduction to functions of complex variable-concept of Limit & continuity - Differentiation, Cauchy-Riemann equations, analytic functions (exponential, trigonometric, logarithm), harmonic functions, finding harmonic conjugate-construction of analytic functions by Milne Thomson method-Conformal mappings-standard transformations (e[*]/_x, k2) Mobius transformations (bilinear) and their properties. UNIT - II Complex Variable – Integration: 9 Hrs Line integral-Contour integration, Cauchy's integral theorem, Cauchy Integral formula, Liouville's heorem (without proof) and Maximum-Modulus theorem (without proof), and Maximum-Modulus theorem (without proof), and Maximum-Modulus theorem (without proof), and Maximum-Modulus theorem (vithout proof). Evaluation of definite integral involving sine and cosine, Evaluation of sertain improper integrals (around unit circle, semi circle with f(z) not having poles on real axis). UNIT - III Laplace Transforms of derivatives and integrals – Unit step function – Second shifting theorem, Transforms of derivatives and integrals – Unit step function of Periodic function. Differentiat coefficients using Laplace transform of Periodic function. Ifferentiat coefficients (Euler's) – Dirichlet conditions for the existence of Fourier series – functions having discontinuity-Fourier series of Even and odd functions – Fourier series – fourier second ficients (Euler's) – Dirichlet conditions of one dimensional wave equation, one dimensional heat equation of separation o			conformal mann	200			
 integrals along contours. Understand the usage of laplace transforms. Formulate/solve/classify the solutions of periodic functions. Formulate/solve/classify the solutions of partial differential equations and also find the solution of one-dimensional wave equation and heat equation. UNIT - I Complex Variable - Differentiation: 9 Hrs Introduction to functions of complex variable-concept of Limit & continuity- Differentiation, Cauchy-Riemann equations, analytic functions (exponential, trigonometric, logarithm), harmonic functions, finding harmonic conjugate-construction of analytic function by Milne Thomson method-Conformal mappings-standard transformations (et ¹/_x, k2) Mobius transformations (bilinear) and their properties. UNIT - II Complex Variable - Integration: 9 Hrs Line integral-Contour integration, Cauchy's integral theorem, Cauchy Integral formula, Liouville's heorem (without proof) and Maximum-Modulus theorem (without proof); periodic function of definite integral involving sine and cosine. Evaluation of seriatin improper integrals (around unit circle, semi circle with f(z) not having poles on real axis). UNIT - III Laplace Transforms 9 Hrs Definition-Laplace transform of standard functions-existence of Laplace Transform – Inverse ransform – First shifting Theorem, Transforms of derivatives and integrals – Unit step function second shifting theorem – Dirac's delta function – Convolution theorem – Laplace transform of Periodic function. Differentiation and integration of transform – solving Initial value problems to ordinary differential equations with constant coefficients using Laplace transforms. UNIT - IV Fourier series Mars Determination of Fourier coefficients (Euler's) – Dirichlet conditions for the existence of Fourier series – functions having discontinuity-Fourier series of Even and odd functions – Fourier series in ana bitu					unto	impr	onor
 Understand the usage of laplace transforms. Evaluate the fourier series expansion of periodic functions. Formulate/solve/classify the solutions of partial differential equations and also find the solution of one-dimensional wave equation and heat equation. UNIT - I Complex Variable – Differentiation: 9 Hrs Introduction to functions of complex variable-concept of Limit & continuity- Differentiation, Cauchy-Riemann equations, analytic functions (exponential, trigonometric, logarithm), harmonic functions, finding harmonic conjugate-construction of analytic function by Milne Thomson method-Conformal mappings-standard transformations (e^x,			egiai meorem to	eval	uale	mpro	sper
 Evaluate the fourier series expansion of periodic functions. Formulate/solve/classify the solutions of partial differential equations and also find the solution of one-dimensional wave equation and heat equation. UNIT - I Complex Variable – Differentiation: 9 Hrs Introduction to functions of complex variable-concept of Limit & continuity- Differentiation; Cauchy-Riemann equations, analytic functions (exponential, trigonometric, logarithm), harmonic functions, finding harmonic conjugate-construction of analytic function by Milne Thomson method. Conformal mappings-standard transformations (e², ¹/_x, kz) Mobius transformations (bilinear) and their properties. UNIT - II Complex Variable – Integration: 9 Hrs Line integral-Contour integration, Cauchy's integral theorem, Cauchy Integral formula, Liouville's heorem (without proof) and Maximum-Modulus theorem (without proof) power series expansions: Taylor's series; Residues, Cauchy Residue heorem (without proof), Evaluation of definite integral involving sine and cosine, Evaluation of sertain improper integrals (around unit circle, semi circle with f(z) not having poles on real axis). UNIT - III Laplace Transforms 9 9 Hrs Definition-Laplace transform of standard functions-existence of Laplace Transform – Inverse ransform – First shifting Theorem, Transforms of derivatives and integrals – Unit step function – Second shifting theorem – Dirac's delta function – Convolution theorem – Laplace transform of Fourier series – function having discontinuity-Fourier series of Even and odd functions for the existence of Fourier series – functions having discontinuity-Fourier series of Even and odd functions – Fourier arerses – functions having discontinuity-Fourier series of Even and odd functions – Fourier series in an arbitrary interval – Half-range Fourier sine and cosine expansions- typical wave forms - Parseval's formula- Complex form of Fourier series. UNI							
 Formulate/solve/classify the solutions of partial differential equations and also find the solution of one-dimensional wave equation and heat equation. UNIT - I Complex Variable – Differentiation: 9 Hrs Introduction to functions of complex variable-concept of Limit & continuity - Differentiation, Cauchy-Riemann equations, analytic functions (exponential, trigonometric, logarithm), harmonic functions, finding harmonic conjugate-construction of analytic function by Milne Thomson method-functions, finding harmonic conjugate-construction of analytic function by Milne Thomson method-functions, finding harmonic conjugate-construction of analytic function by Milne Thomson method-functions, finding harmonic conjugate-construction of analytic functions (bilinear) and their properties. UNIT - II Complex Variable – Integration: 9 Hrs Line integral-Contour integration, Cauchy's integral theorem (without proof), power series expansions: Taylor's series, zeros of analytic functions, singularities, Laurent's series; Residues, Cauchy Residue heorem (without proof), Evaluation of definite integral involving sine and cosine, Evaluation of sertain improper integrals (around unit circle, semi circle with f(z) not having poles on real axis). UNIT - III Laplace Transforms 9 Hrs Definition-Laplace transform of standard functions-existence of Laplace Transform – Inverse ransform – First shifting Theorem, Transform – solving Initial value problems to ordinary differential equations with constant coefficients using Laplace transforms. UNIT - IV Fourier series 1 Multicon – Solving Initial value problems to ordinary differential equations with constant coefficients using Laplace transforms - Fourier series of Even and odd functions – Fourier series of Initia and boundary conditions - Fourier series in an arbitrary interval – Half-range Fourier series of Even and odd functions – Fourier series in an arbitrary interval – Half-range Fourie			ctions				
solution of one-dimensional wave equation and heat equation. UNIT - I Omplex Variable – Differentiation: 9 Hrs Introduction to functions of complex variable-concept of Limit & continuity- Differentiation, Cauchy-Riemann equations, analytic functions (exponential, trigonometric, logarithm), harmonic functions, finding harmonic conjugate-construction of analytic function by Milne Thomson method-Conformal mappings-standard transformations (e ^x , -, kz) Mobius transformations (bilinear) and their properties. UNIT - II Complex Variable – Integration: 9 Hrs Line integral-Contour integration, Cauchy's integral theorem, Cauchy Integral formula, Liouville's heorem (without proof) and Maximum-Modulus theorem (without proof); power series expansions: Taylor's series, zeros of analytic functions, singularities, Laurent's series; Residues, Cauchy Residue heorem (without proof), Evaluation of definite integral involving sine and cosine, Evaluation of certain improper integrals (around unit circle, semi circle with f(z) not having poles on real axis). UNIT - III Laplace Transforms 9 Hrs Definition-Laplace transform of standard functions-existence of Laplace Transform – Inverse ransform – First shifting Theorem, Transform ms of derivatives and integrals – Unit step function - Second shifting theorem – Dirac's delta function – Convolution theorem – Laplace transforms. UNIT - IV Fourier series 8 Hrs Determination of Fourier coefficients (Euler's) – Dirichlet conditions for the existence of fouries sprentind discontinuity-Fourier series of Even and odd fun				e and	ا مادد	find	tha
UNIT - 1 Complex Variable – Differentiation: 9 Hrs Introduction to functions of complex variable-concept of Limit & continuity- Differentiation, cauchy-Riemann equations, analytic functions (exponential, trigonometric, logarithm), harmonic functions, finding harmonic conjugate-construction of analytic function by Milne Thomson method-Conformal mappings-standard transformations (e ^x , k) Mobius transformations (bilinear) and their properties. UNIT - II Complex Variable – Integration: 9 Hrs Line integral-Contour integration, Cauchy's integral theorem, (without proof), Evaluation of definite integral involving sine and cosine, Evaluation of certain improper integrals (around unit circle, semi circle with f(z) not having poles on real axis). UNIT - III Laplace Transforms 9 Hrs Definition-Laplace transform of standard functions-existence of Laplace Transform – Inverse ransform – First shifting Theorem, Transforms of derivatives and integrals – Unit step function – Second shifting theorem – Dirac's delta function – Convolution theorem – Laplace transform of preiroid function of fourier coefficients using Laplace transforms. UNIT - IV Fourier series 8 Hrs Determination of Fourier coefficients (Euler's) – Dirichlet conditions for the existence of Fourier series – functions having discontinuity-Fourier series of Even and odd functions – Fourier series in an arbitrary interval – Half-range Fourier sine and cosine expansions. typical wave forms – Parseval's formula-Complex form of Fourier series. 9 Hrs Solution of second order PDEs by Method of separation of variables – Solutions of one dimen				s and	ansc	/ 1110	une
Introduction to functions of complex variable-concept of Limit & continuity- Differentiation, Cauchy-Riemann equations, analytic functions (exponential, trigonometric, logarithm), harmonic functions, finding harmonic conjugate-construction of analytic function by Milne Thomson method-Conformal mappings-standard transformations ($e^2, \frac{1}{e^2}, kz$) Mobius transformations (bilinear) and their properties. UNIT - II Complex Variable – Integration: 9 Hrs Line integral-Contour integration, Cauchy's integral theorem, Cauchy Integral formula, Liouville's heorem (without proof) and Maximum-Modulus theorem (without proof); power series expansions: Taylor's series, zeros of analytic functions, singularities, Laurent's series; Residues, Cauchy Residue theorem (without proof), Evaluation of definite integral involving sine and cosine, Evaluation of certain improper integrals (around unit circle, semi circle with f(z) not having poles on real axis). UNIT - III Laplace Transforms 9 Hrs Definition-Laplace transform of standard functions-existence of Laplace Transform – Inverse transform – First shifting Theorem, Transforms of derivatives and integrals – Unit step function - Second shifting theorem – Dirac's delta function – convolution theorem – Laplace transform of ordinary differential equations with constant coefficients using Laplace transforms. UNIT - IV Fourier series 8 Hrs Determination of Fourier coefficients (Euler's) – Dirichlet conditions for the existence of Fourier series – functions having discontinuity-Fourier series of Even and odd functions – Fourier series in an arbitrary interval – Half-range Fourier sine and cosine expansions - typical wave forms - Paretal Differential Equations & Appli			equation.	9 H	rs		
Cauchy-Riemann equations, analytic functions (exponential, trigonometric, logarithm), harmonic functions, finding harmonic conjugate-construction of analytic function by Milne Thomson method-Conformal mappings-standard transformations (e ^x , kz) Mobius transformations (bilinear) and their properties. UNIT - II Complex Variable – Integration: 9 Hrs Line integral-Contour integration, Cauchy's integral theorem, Cauchy Integral formula, Liouville's theorem (without proof) and Maximum-Modulus theorem (without proof); power series expansions: Taylor's series, zeros of analytic functions, singularities, Laurent's series; Residues, Cauchy Residue theorem (without proof), Evaluation of definite integral involving sine and cosine, Evaluation of sertain improper integrals (around unit circle, semi circle with f(z) not having poles on real axis). UNIT - III Laplace Transforms 9 Hrs Definition-Laplace transform of standard functions-existence of Laplace Transform – Inverse ransform – First shifting Theorem, Transforms of derivatives and integrals – Unit step function of deriodic function. Differentiation and integration of transform – Solving Initial value problems to ordinary differential equations with constant coefficients using Laplace transforms. UNIT - IV Fourier series 8 Hrs Determination of Fourier coefficients (Euler's) – Dirichlet conditions for the existence of Fourier series – functions having discontinuity-Fourier series of Even and odd functions – Fourier series in an arbitrary interval – Half-range Fourier sine and cosine expansions typical wave forms - Partial Differential Equations & Applications 9 Hrs Solution of second order PDEs by Method of separation of variables – Solutions. Steady state wo dimensional heat equations (Laplace equations). Fextbooks: 1. Higher Engineering Mathematics, by Erwin Kreyszig, Wiley India Reference Books: 1. Higher Engineering Mathematics, by B.V.Ramana, Mc Graw Hill publishers.			imit & continuit			entia	tion
Functions, finding harmonic conjugate-construction of analytic function by Milne Thomson method-Conformal mappings-standard transformations (e ² , -, kz) Mobius transformations (bilinear) and their properties. UNIT - II Complex Variable – Integration: 9 Hrs Line integral-Contour integration, Cauchy's integral theorem, Cauchy Integral formula, Liouville's theorem (without proof) and Maximum-Modulus theorem (without proof); power series expansions: Taylor's series, zeros of analytic functions, singularities, Laurent's series; Residues, Cauchy Residue theorem (without proof), Evaluation of definite integral involving sine and cosine, Evaluation of certain improper integrals (around unit circle, semi circle with f(z) not having poles on real axis). UNIT - III Laplace Transforms 9 Hrs Definition-Laplace transform of standard functions-existence of Laplace Transform – Inverse ransform – First shifting Theorem, Transforms of derivatives and integrals – Unit step function – Second shifting theorem – Dirac's delta function – Convolution theorem – Laplace transform of Periodic function. Differentiation and integration of transform – solving Initial value problems to ordinary differential equations with constant coefficients using Laplace transforms. UNIT - IV Fourier series 8 Hrs Determination of Fourier coefficients (Euler's) – Dirichlet conditions for the existence of Fourier series – functions having discontinuity-Fourier series of Even and odd functions – Fourier series in an arbitrary interval – Half-range Fourier series. 9 Hrs Differential Equations & Applications 9 Hrs Solution of second order PDEs							
Conformal mappings-standard transformations (e ^z , -, z ² , kz) Mobius transformations (bilinear) and their properties. 9 Hrs UNIT - II Complex Variable – Integration: 9 Hrs Line integral-Contour integration, Cauchy's integral theorem, Cauchy Integral formula, Liouville's theorem (without proof) and Maximum-Modulus theorem (without proof); power series expansions: 19 Hrs Taylor's series, zeros of analytic functions, singularities, Laurent's series; Residues, Cauchy Residue theorem (without proof), Evaluation of definite integral involving sine and cosine, Evaluation of sertain improper integrals (around unit circle, semi circle with f(z) not having poles on real axis). UNIT - III Laplace Transforms 9 Hrs Definition-Laplace transform of standard functions-existence of Laplace Transform – Inverse ransform – First shifting Theorem, Transforms of derivatives and integrals – Unit step function – Second shifting theorem – Dirac's delta function – Convolution theorem – Laplace transform of Periodic function. Differentiation and integration of transform – solving Initial value problems to ordinary differential equations with constant coefficients using Laplace transforms. UNIT - IV Fourier series 8 Hrs Determination of Fourier coefficients (Euler's) – Dirichlet conditions for the existence of Fourier series – functions having discontinuity-Fourier series of Even and odd functions – Fourier series. UNIT - V Partial Differential Equations & Applications 9 Hrs Solution of second order PDEs by Method of separation of variables – Solutions of one							
properties. 2 UNIT - II Complex Variable – Integration: 9 Hrs Line integral-Contour integration, Cauchy's integral theorem, (without proof), power series expansions: Faylor's series, zeros of analytic functions, singularities, Laurent's series; Residues, Cauchy Residue, theorem (without proof), Evaluation of definite integral involving sine and cosine, Evaluation of certain improper integrals (around unit circle, semi circle with f(z) not having poles on real axis). UNIT - III Laplace Transforms 9 Hrs Definition-Laplace transform of standard functions-existence of Laplace Transform – Inverse ransform – First shifting Theorem, Transforms of derivatives and integrals – Unit step function – Second shifting theorem – Dirac's delta function – Convolution theorem – Laplace transform of periodic function. Differential equations with constant coefficients using Laplace transforms. UNIT - IV Fourier series 8 Hrs Determination of Fourier coefficients (Euler's) – Dirichlet conditions for the existence of Fourier series – functions having discontinuity-Fourier series of Even and odd functions – Fourier series in an arbitrary interval – Half-range Fourier sine and cosine expansions - typical wave forms - Parseval's formula- Complex form of Fourier series. 9 Hrs Solution of second order PDEs by Method of separation of variables – Solutions of one dimensional wave equations (Laplace equations). 9 Hrs Complex form of Capine ering Mathematics, by Erwin Kreyszig, Wiley India Reference Books: 1. Higher Engineering Mathematics, by Erwin Kreyszig, Wiley Indi	Conformal mapping	s-standard transformations ($e^{z} - kz$) Mobius	s transformations	(hilir	near)	and t	heir
UNIT - II Complex Variable – Integration: 9 Hrs Line integral-Contour integration, Cauchy's integral theorem, Cauchy Integral formula, Liouville's theorem (without proof) and Maximum-Modulus theorem (without proof); power series expansions: Taylor's series, zeros of analytic functions, singularities, Laurent's series; Residues, Cauchy Residue theorem (without proof), Evaluation of definite integral involving sine and cosine, Evaluation of certain improper integrals (around unit circle, semi circle with f(z) not having poles on real axis). UNIT - III Laplace Transforms 9 Hrs Definition-Laplace transform of standard functions-existence of Laplace Transform – Inverse ransform – First shifting Theorem, Transforms of derivatives and integrals – Unit step function – Second shifting theorem – Dirac's delta function – Convolution theorem – Laplace transform of Periodic function. Differentiation and integration of transform – solving Initial value problems to ordinary differential equations with constant coefficients using Laplace transforms. UNIT - IV Fourier series 8 Hrs Determination of Fourier coefficients (Euler's) – Dirichlet conditions for the existence of Fourier series – functions having discontinuity-Fourier series of Even and odd functions – Fourier series in an arbitrary interval – Half-range Fourier sine and cosine expansions- typical wave forms - Parseval's formula - Complex form of Fourier series. 9 Hrs UNIT - V Partial Differential Equations & Applications 9 Hrs Solution of second order PDEs by Method of separation of variables – Solutions of one dimensional wave equation, o	properties		, unisionnations	(UIIII	icui)	und	
Line integral-Contour integration, Cauchy's integral theorem, Cauchy Integral formula, Liouville's theorem (without proof) and Maximum-Modulus theorem (without proof); power series expansions: Taylor's series, zeros of analytic functions, singularities, Laurent's series; Residues, Cauchy Residue theorem (without proof), Evaluation of definite integral involving sine and cosine, Evaluation of sertain improper integrals (around unit circle, semi circle with f(z) not having poles on real axis). UNIT - III Laplace Transforms 9 Hrs Definition-Laplace transform of standard functions-existence of Laplace Transform – Inverse ransform – First shifting Theorem, Transforms of derivatives and integrals – Unit step function – Second shifting theorem – Dirac's delta function – Convolution theorem – Laplace transform of Periodic function. Differentiation and integration of transform – solving Initial value problems to ordinary differential equations with constant coefficients using Laplace transforms. UNIT - IV Fourier series 8 Hrs Determination of Fourier coefficients (Euler's) – Dirichlet conditions for the existence of Fourier series – functions having discontinuity-Fourier series of Even and odd functions – Fourier series in an arbitrary interval – Half-range Fourier site and cosine expansions- typical wave forms - Parseval's formula- Complex form of Fourier series. UNIT - V Partial Differential Equations & Applications 9 Hrs Solution of second order PDEs by Method of separation of variables – Solutions of one dimensional heat equations. Textbooks: 1. Higher Engineering Mathematics, B.S.Grewal, Khanna publishers. 2. Advanced Engineering Mathematics, by Erwin Kreyszig, Wiley India Reference Books: 1. Higher Engineering Mathematics, by B.V.Ramana, Mc Graw Hill publishers.		Complex Variable – Integration [.]	•	9 H	rs		
heorem (without proof) and Maximum-Modulus theorem (without proof); power series expansions: Taylor's series, zeros of analytic functions, singularities, Laurent's series; Residues, Cauchy Residue heorem (without proof), Evaluation of definite integral involving sine and cosine, Evaluation of certain improper integrals (around unit circle, semi circle with f(z) not having poles on real axis). UNIT - III Laplace Transforms 9 Hrs Definition-Laplace transform of standard functions-existence of Laplace Transform – Inverse ransform – First shifting Theorem, Transforms of derivatives and integrals – Unit step function – Second shifting theorem – Dirac's delta function – Convolution theorem – Laplace transform of Periodic function. Differentiation and integration of transform – solving Initial value problems to ordinary differential equations with constant coefficients using Laplace transforms. UNIT - IV Fourier series 8 Hrs Determination of Fourier coefficients (Euler's) – Dirichlet conditions for the existence of Fourier series – functions having discontinuity-Fourier series of Even and odd functions – Fourier series in an arbitrary interval – Half-range Fourier sine and cosine expansions- typical wave forms - Parseval's formula- Complex form of Fourier series. 9 Hrs Solution of second order PDEs by Method of separation of variables – Solutions of one dimensional wave equations (Laplace equations). 9 Hrs Textbooks: 1. Higher Engineering Mathematics, B.S.Grewal, Khanna publishers. 2. Advanced Engineering Mathematics, by Erwin Kreyszig, Wiley India Reference Books:						iouvi	lle's
Taylor's series, zeros of analytic functions, singularities, Laurent's series; Residues, Cauchy Residue, heorem (without proof), Evaluation of definite integral involving sine and cosine, Evaluation of certain improper integrals (around unit circle, semi circle with f(z) not having poles on real axis). UNIT - III Laplace Transforms 9 Hrs Definition-Laplace transform of standard functions-existence of Laplace Transform – Inverse ransform – First shifting Theorem, Transforms of derivatives and integrals – Unit step function – Second shifting theorem – Dirac's delta function – Convolution theorem – Laplace transform of Periodic function. Differentiation and integration of transform – solving Initial value problems to ordinary differential equations with constant coefficients using Laplace transforms. UNIT - IV Fourier series 8 Hrs Determination of Fourier coefficients (Euler's) – Dirichlet conditions for the existence of Fourier series – functions having discontinuity-Fourier series of Even and odd functions – Fourier series in an arbitrary interval – Half-range Fourier sine and cosine expansions- typical wave forms - Parseval's formula- Complex form of Fourier series. 9 Hrs Solution of second order PDEs by Method of separation of variables – Solutions of one dimensional wave equations (Laplace equations). 9 Hrs Textbooks: 1. Higher Engineering Mathematics, by Erwin Kreyszig, Wiley India Reference Books: 1. Higher Engineering Mathematics, by B.V.Ramana, Mc Graw Hill publishers. 1. Higher Engineering Mathematics, by B.V.Ramana, Mc Graw Hill publishers.							
heorem (without proof), Evaluation of definite integral involving sine and cosine, Evaluation of certain improper integrals (around unit circle, semi circle with f(z) not having poles on real axis). UNIT - III Laplace Transforms 9 Hrs Definition-Laplace transform of standard functions-existence of Laplace Transform – Inverse ransform – First shifting Theorem, Transforms of derivatives and integrals – Unit step function – Second shifting theorem – Dirac's delta function – Convolution theorem – Laplace transform of Periodic function. Differentiation and integration of transform – solving Initial value problems to ordinary differential equations with constant coefficients using Laplace transforms. UNIT - IV Fourier series 8 Hrs Determination of Fourier coefficients (Euler's) – Dirichlet conditions for the existence of Fourier series – functions having discontinuity-Fourier series of Even and odd functions – Fourier series in an arbitrary interval – Half-range Fourier sine and cosine expansions- typical wave forms - Parseval's formula- Complex form of Fourier series. 9 Hrs UNIT - V Partial Differential Equations & Applications 9 Hrs Solution of second order PDEs by Method of separation of variables – Solutions of one dimensional wave equation, one dimensional heat equation sub. 9 Hrs I. Higher Engineering Mathematics, by Erwin Kreyszig, Wiley India Reference Books: 1. Higher Engineering Mathematics, by Erwin Kreyszig, Wiley India							
certain improper integrals (around unit circle, semi circle with f(z) not having poles on real axis). UNIT - III Laplace Transforms 9 Hrs Definition-Laplace transform of standard functions-existence of Laplace Transform – Inverse ransform – First shifting Theorem, Transforms of derivatives and integrals – Unit step function – Second shifting theorem – Dirac's delta function – Convolution theorem – Laplace transform of Periodic function. Differentiation and integration of transform – solving Initial value problems to ordinary differential equations with constant coefficients using Laplace transforms. UNIT - IV Fourier series 8 Hrs Determination of Fourier coefficients (Euler's) – Dirichlet conditions for the existence of Fourier series – functions having discontinuity-Fourier series of Even and odd functions – Fourier series in an arbitrary interval – Half-range Fourier sine and cosine expansions- typical wave forms - Parseval's formula- Complex form of Fourier series. 9 Hrs Solution of second order PDEs by Method of separation of variables – Solutions of one dimensional wave equation, one dimensional heat equation under initial and boundary conditions. Steady state two dimensional heat equations (Laplace equations). Textbooks: 1. Higher Engineering Mathematics, B.S.Grewal, Khanna publishers. 2. Advanced Engineering Mathematics, by Erwin Kreyszig, Wiley India Reference Books: 1. Higher Engineering Mathematics, by S.V.Ramana, Mc Graw Hill publishers.							
Definition-Laplace transform of standard functions-existence of Laplace Transform – Inverse transform – First shifting Theorem, Transforms of derivatives and integrals – Unit step function – Second shifting theorem – Dirac's delta function – Convolution theorem – Laplace transform of Periodic function. Differentiation and integration of transform – solving Initial value problems to ordinary differential equations with constant coefficients using Laplace transforms. UNIT - IV Fourier series 8 Hrs Determination of Fourier coefficients (Euler's) – Dirichlet conditions for the existence of Fourier series – functions having discontinuity-Fourier series of Even and odd functions – Fourier series in an arbitrary interval – Half-range Fourier series. 9 Hrs UNIT - V Partial Differential Equations & Applications 9 Hrs Solution of second order PDEs by Method of separation of variables – Solutions. Steady state two dimensional heat equations (Laplace equations). 1. Higher Engineering Mathematics, B.S.Grewal, Khanna publishers. 2. Advanced Engineering Mathematics, by Erwin Kreyszig, Wiley India Reference Books: 1. Higher Engineering Mathematics, by Erwin Kreyszig, Wiley India							
Definition-Laplace transform of standard functions-existence of Laplace Transform – Inverse transform – First shifting Theorem, Transforms of derivatives and integrals – Unit step function – Second shifting theorem – Dirac's delta function – Convolution theorem – Laplace transform of Periodic function. Differentiation and integration of transform – solving Initial value problems to ordinary differential equations with constant coefficients using Laplace transforms. UNIT - IV Fourier series 8 Hrs Determination of Fourier coefficients (Euler's) – Dirichlet conditions for the existence of Fourier series – functions having discontinuity-Fourier series of Even and odd functions – Fourier series in an arbitrary interval – Half-range Fourier series. 9 Hrs UNIT - V Partial Differential Equations & Applications 9 Hrs Solution of second order PDEs by Method of separation of variables – Solutions. Steady state two dimensional heat equations (Laplace equations). 1. Higher Engineering Mathematics, B.S.Grewal, Khanna publishers. 2. Advanced Engineering Mathematics, by Erwin Kreyszig, Wiley India Reference Books: 1. Higher Engineering Mathematics, by Erwin Kreyszig, Wiley India				1			
ransform – First shifting Theorem, Transforms of derivatives and integrals – Unit step function – Second shifting theorem – Dirac's delta function – Convolution theorem – Laplace transform of Periodic function. Differentiation and integration of transform – solving Initial value problems to ordinary differential equations with constant coefficients using Laplace transforms. UNIT - IV Fourier series 8 Hrs Determination of Fourier coefficients (Euler's) – Dirichlet conditions for the existence of Fourier series – functions having discontinuity-Fourier series of Even and odd functions – Fourier series in an arbitrary interval – Half-range Fourier sine and cosine expansions- typical wave forms - Parseval's formula- Complex form of Fourier series. UNIT - V Partial Differential Equations & Applications 9 Hrs Solution of second order PDEs by Method of separation of variables – Solutions of one dimensional wave equation, one dimensional heat equation under initial and boundary conditions. Steady state two dimensional heat equations (Laplace equations). Textbooks: 1. Higher Engineering Mathematics, B.S.Grewal, Khanna publishers. 2. Advanced Engineering Mathematics, by Erwin Kreyszig, Wiley India Reference Books: 1. Higher Engineering Mathematics, by B.V.Ramana, Mc Graw Hill publishers.		Laplace Transforms					
Second shifting theorem – Dirac's delta function – Convolution theorem – Laplace transform of Periodic function. Differentiation and integration of transform – solving Initial value problems to ordinary differential equations with constant coefficients using Laplace transforms. UNIT - IV Fourier series 8 Hrs Determination of Fourier coefficients (Euler's) – Dirichlet conditions for the existence of Fourier series – functions having discontinuity-Fourier series of Even and odd functions – Fourier series in an arbitrary interval – Half-range Fourier sine and cosine expansions- typical wave forms - Parseval's formula- Complex form of Fourier series. 9 Hrs UNIT - V Partial Differential Equations & Applications 9 Hrs Solution of second order PDEs by Method of separation of variables – Solutions of one dimensional wave equation, one dimensional heat equations under initial and boundary conditions. Steady state two dimensional heat equations (Laplace equations). Textbooks: 1. Higher Engineering Mathematics, B.S.Grewal, Khanna publishers. 2. Advanced Engineering Mathematics, by Erwin Kreyszig, Wiley India Reference Books: 1. Higher Engineering Mathematics, by B.V.Ramana, Mc Graw Hill publishers.							
Periodic function. Differentiation and integration of transform – solving Initial value problems to ordinary differential equations with constant coefficients using Laplace transforms. UNIT - IV Fourier series 8 Hrs Determination of Fourier coefficients (Euler's) – Dirichlet conditions for the existence of Fourier series – functions having discontinuity-Fourier series of Even and odd functions – Fourier series in an arbitrary interval – Half-range Fourier sine and cosine expansions- typical wave forms - Parseval's formula- Complex form of Fourier series. 9 Hrs Solution of second order PDEs by Method of separation of variables – Solutions of one dimensional wave equation, one dimensional heat equations under initial and boundary conditions. Steady state two dimensional heat equations (Laplace equations). 9 Hrs Fextbooks: 1. Higher Engineering Mathematics, B.S.Grewal, Khanna publishers. 2. Advanced Engineering Mathematics, by Erwin Kreyszig, Wiley India Reference Books: 1. Higher Engineering Mathematics, by B.V.Ramana, Mc Graw Hill publishers.							
ordinary differential equations with constant coefficients using Laplace transforms. UNIT - IV Fourier series 8 Hrs Determination of Fourier coefficients (Euler's) – Dirichlet conditions for the existence of Fourier series – functions having discontinuity-Fourier series of Even and odd functions – Fourier series in an arbitrary interval – Half-range Fourier sine and cosine expansions- typical wave forms - Parseval's formula- Complex form of Fourier series. UNIT - V Partial Differential Equations & Applications 9 Hrs Solution of second order PDEs by Method of separation of variables – Solutions of one dimensional wave equation, one dimensional heat equation under initial and boundary conditions. Steady state two dimensional heat equations (Laplace equations). Textbooks: 1. Higher Engineering Mathematics, B.S.Grewal, Khanna publishers. 2. Advanced Engineering Mathematics, by Erwin Kreyszig, Wiley India Reference Books: 1. Higher Engineering Mathematics, by B.V.Ramana, Mc Graw Hill publishers.							
UNIT - IV Fourier series 8 Hrs Determination of Fourier coefficients (Euler's) – Dirichlet conditions for the existence of Fourier series – functions having discontinuity-Fourier series of Even and odd functions – Fourier series in an arbitrary interval – Half-range Fourier sine and cosine expansions- typical wave forms - Parseval's formula- Complex form of Fourier series. UNIT - V Partial Differential Equations & Applications 9 Hrs Solution of second order PDEs by Method of separation of variables – Solutions of one dimensional wave equation, one dimensional heat equation under initial and boundary conditions. Steady state two dimensional heat equations (Laplace equations). Textbooks: 1. Higher Engineering Mathematics, B.S.Grewal, Khanna publishers. 2. Advanced Engineering Mathematics, by Erwin Kreyszig, Wiley India Reference Books: 1. Higher Engineering Mathematics, by B.V.Ramana, Mc Graw Hill publishers.					e pro	blem	is to
Determination of Fourier coefficients (Euler's) – Dirichlet conditions for the existence of Fourier series – functions having discontinuity-Fourier series of Even and odd functions – Fourier series in an arbitrary interval – Half-range Fourier sine and cosine expansions- typical wave forms - Parseval's formula- Complex form of Fourier series. UNIT - V Partial Differential Equations & Applications 9 Hrs Solution of second order PDEs by Method of separation of variables – Solutions of one dimensional wave equation, one dimensional heat equation under initial and boundary conditions. Steady state two dimensional heat equations (Laplace equations). Textbooks: 1. Higher Engineering Mathematics, B.S.Grewal, Khanna publishers. 2. Advanced Engineering Mathematics, by Erwin Kreyszig, Wiley India Reference Books: 1. Higher Engineering Mathematics, by B.V.Ramana, Mc Graw Hill publishers.	ordinary differential	equations with constant coefficients using La	aplace transforms				
Determination of Fourier coefficients (Euler's) – Dirichlet conditions for the existence of Fourier series – functions having discontinuity-Fourier series of Even and odd functions – Fourier series in an arbitrary interval – Half-range Fourier sine and cosine expansions- typical wave forms - Parseval's formula- Complex form of Fourier series. UNIT - V Partial Differential Equations & Applications 9 Hrs Solution of second order PDEs by Method of separation of variables – Solutions of one dimensional wave equation, one dimensional heat equation under initial and boundary conditions. Steady state two dimensional heat equations (Laplace equations). Textbooks: 1. Higher Engineering Mathematics, B.S.Grewal, Khanna publishers. 2. Advanced Engineering Mathematics, by Erwin Kreyszig, Wiley India Reference Books: 1. Higher Engineering Mathematics, by B.V.Ramana, Mc Graw Hill publishers.	LINIT IV	Fourier series		<u>8</u> Ц	rc		
Fourier series – functions having discontinuity-Fourier series of Even and odd functions – Fourier series in an arbitrary interval – Half-range Fourier sine and cosine expansions- typical wave forms - Parseval's formula- Complex form of Fourier series. UNIT - V Partial Differential Equations & Applications 9 Hrs Solution of second order PDEs by Method of separation of variables – Solutions of one dimensional wave equation, one dimensional heat equation under initial and boundary conditions. Steady state two dimensional heat equations (Laplace equations). Textbooks: 1. Higher Engineering Mathematics, B.S.Grewal, Khanna publishers. 2. Advanced Engineering Mathematics, by Erwin Kreyszig, Wiley India Reference Books: 1. Higher Engineering Mathematics, by B.V.Ramana, Mc Graw Hill publishers.			hlet conditions f			stenc	e of
Series in an arbitrary interval – Half-range Fourier sine and cosine expansions- typical wave forms - Parseval's formula- Complex form of Fourier series. UNIT - V Partial Differential Equations & Applications 9 Hrs Solution of second order PDEs by Method of separation of variables – Solutions of one dimensional wave equation, one dimensional heat equation under initial and boundary conditions. Steady state two dimensional heat equations (Laplace equations). Textbooks: 1. Higher Engineering Mathematics, B.S.Grewal, Khanna publishers. 2. Advanced Engineering Mathematics, by Erwin Kreyszig, Wiley India Reference Books: 1. Higher Engineering Mathematics, by B.V.Ramana, Mc Graw Hill publishers.							
Parseval's formula- Complex form of Fourier series. 9 Hrs UNIT - V Partial Differential Equations & Applications 9 Hrs Solution of second order PDEs by Method of separation of variables – Solutions of one dimensional wave equation, one dimensional heat equation under initial and boundary conditions. Steady state two dimensional heat equations (Laplace equations). Textbooks: 1. Higher Engineering Mathematics, B.S.Grewal, Khanna publishers. 2. Advanced Engineering Mathematics, by Erwin Kreyszig, Wiley India Reference Books: 1. Higher Engineering Mathematics, by B.V.Ramana, Mc Graw Hill publishers.							
UNIT - V Partial Differential Equations & Applications 9 Hrs Solution of second order PDEs by Method of separation of variables – Solutions of one dimensional wave equation, one dimensional heat equation under initial and boundary conditions. Steady state two dimensional heat equations (Laplace equations). 9 Hrs Textbooks: 1. Higher Engineering Mathematics, B.S.Grewal, Khanna publishers. 2. Advanced Engineering Mathematics, by Erwin Kreyszig, Wiley India Reference Books: 1. Higher Engineering Mathematics, by B.V.Ramana, Mc Graw Hill publishers.			ne expansions vy	picui	vi u v	0 1011	
 Solution of second order PDEs by Method of separation of variables – Solutions of one dimensional wave equation, one dimensional heat equation under initial and boundary conditions. Steady state two dimensional heat equations (Laplace equations). Textbooks: Higher Engineering Mathematics, B.S.Grewal, Khanna publishers. Advanced Engineering Mathematics, by Erwin Kreyszig, Wiley India Reference Books: Higher Engineering Mathematics, by B.V.Ramana, Mc Graw Hill publishers. 			ations	9 H	rs		
 wave equation, one dimensional heat equation under initial and boundary conditions. Steady state two dimensional heat equations (Laplace equations). Textbooks: Higher Engineering Mathematics, B.S.Grewal, Khanna publishers. Advanced Engineering Mathematics, by Erwin Kreyszig, Wiley India Reference Books: Higher Engineering Mathematics, by B.V.Ramana, Mc Graw Hill publishers. 						nensi	onal
 two dimensional heat equations (Laplace equations). Textbooks: Higher Engineering Mathematics, B.S.Grewal, Khanna publishers. Advanced Engineering Mathematics, by Erwin Kreyszig, Wiley India Reference Books: Higher Engineering Mathematics, by B.V.Ramana, Mc Graw Hill publishers. 							
Textbooks: 1. Higher Engineering Mathematics, B.S.Grewal, Khanna publishers. 2. Advanced Engineering Mathematics, by Erwin Kreyszig, Wiley India Reference Books: 1. Higher Engineering Mathematics, by B.V.Ramana, Mc Graw Hill publishers.			a boundary cond		. 5.0	uag	Julio
 Higher Engineering Mathematics, B.S.Grewal, Khanna publishers. Advanced Engineering Mathematics, by Erwin Kreyszig, Wiley India Reference Books: Higher Engineering Mathematics, by B.V.Ramana, Mc Graw Hill publishers. 							
 Higher Engineering Mathematics, B.S.Grewal, Khanna publishers. Advanced Engineering Mathematics, by Erwin Kreyszig, Wiley India Reference Books: Higher Engineering Mathematics, by B.V.Ramana, Mc Graw Hill publishers. 	Textbooks:						
 Advanced Engineering Mathematics, by Erwin Kreyszig, Wiley India Reference Books: Higher Engineering Mathematics, by B.V.Ramana, Mc Graw Hill publishers. 		Engineering Mathematics, B.S.Grewal, Khan	na publishers.				
1. Higher Engineering Mathematics, by B.V.Ramana, Mc Graw Hill publishers.							
1. Higher Engineering Mathematics, by B.V.Ramana, Mc Graw Hill publishers.	Reference Books:	· · · · · · · · · · · · · · · · · · ·					
		Engineering Mathematics, by B.V.Ramana, M	Mc Graw Hill pub	lishe	rs.		
		•					

- 1. nptel.ac.in/courses/111107056
- 2. onlinelibrary.wiley.com
- 3. https://onlinecourses.nptel.ac.in/noc18ma12.

Course Code	Fluid Mechanics and Hydrauli	c Machines	L	Т	P		С
20A01302T	(Common to Civil & Mech		3	0	0		3
Pre-requisite	Physics, Chemistry	Semester			II	[
 To explain 	the solve engineering problems in basics of statics, kinematics and do of hydrostatic forces on objects.		ls an	d va	rious	mea	asuring
 To enable the students measure quantities of fluid flowing in pipes, tanks and channels To Introduce concepts of uniform and non-uniform flows through open channel. To impart knowledge on design of turbines and pumps. 							
Course Outcomes							
 Understand Understand through cha Analyze ch 	basic terms used in fluid mechanics the principles of fluid statics, kinemat flow characteristics and classify the fl annels aracteristics for uniform and non-unifo erent types of turbines, centrifugal and	lows and estimate	vario chan		osses	in flo)W
Pascal's law, pres Manometer, Singl	Introduction to Fluid Statics n a fluid and a solid - characteristics of ssure variation with temperature, d e Column Manometer, U Tube I re and force: horizontal, vertical and i	lensity and altitu Differential Mano	ude. omete	Piezo er. p	omete ressu	er, U ire g	J-Tube gauges,
UNIT - II	Fluid kinematics and Dynamics						
velocity potential coordinates. Fluid Dynamics: S equation – derivatio orifice meter and P	uid flow - Stream line, path line, str function. One, two and three - dim Surface and body forces; Equations on; Energy Principle; Practical applica itot tube; Momentum principle; Forces forced; Definitions of Reynolds Numb Number	ensional continui of motion - Eul tions of Bernoulli s exerted by fluid	er's i's eq flow	quation equation quation on pi	ons in tion; n: Ve tpe be	n Ca Bern enturi end;	noulli's imeter, Vortex
UNIT - III	Analysis Of Pipe Flow						
Line and Total End Flow- Laminar flow viscosity. Reynolds	pelines; Darcy – Weisbach equation; ergy Line; Concept of equivalent leng v through: circular pipes, annulus and s experiment, Transition from laminar to h pipes-Moody's diagram – Introduction	gth – Pipes in Pa parallel plates. Sto to turbulent flow.	rallel oke's Resis	and law, stance	Serie Meas to fl	es. La suren	aminar nent of
of a channel, cla Distribution of c Momentum Equat Computation of Un depth, and Critical Varied FlowDynar	Flow in Open Channels w-Comparison between open channel ssification of open channels, classi hannel section. Uniform Flow-Cor ion, Characteristics of uniform flow iform flow.Specific energy, critical flo depth. Measurement of Discharge and nic Equation of Gradually Varied F acteristics- Energy dissipation.	fication of open atinuity Equation w, Chezy's form ow, discharge curr l Velocity – Broa	n cha n, Ei nula, ve, Sj .d Cre	annel nergy Man pecifi ested	flow Equ ning ³ c for Weir	v, V uatio 's fo ce, S . Gra	elocity on and ormula. pecific adually

MECHANICAL ENGINEERING

UNIT ·	5
velocit of turb - chara work c speed; curves;	of Jets- Hydrodynamic force of jets on stationary and moving flat, inclined and curved vanes - y triangles at inlet and outlet - Work done and efficiency - Hydraulic Turbines: Classification ines; pelton wheel and its design. Francis turbine and its design - efficiency - Draft tube: theory cteristic curves of hydraulic turbines - Cavitation - Working principles of a centrifugal pump, lone by impeller; heads, losses and efficiencies; minimum starting speed; Priming; specific limitation of suction lift, net positive suction head (NPSH); Performance and characteristic cavitation effects; Multistage centrifugal pumps; troubles and remedies – Introduction to pocating Pump.
Textbo	ooks:
1.	P. M. Modi and S. M. Seth, "Hydraulics and Fluid Mechanics", Standard Book House
2.	K. Subrahmanya, "Theory and Applications of Fluid Mechanics", Tata McGraw Hill
Refere	nce Books:
1.	R. K. Bansal, A text of "Fluid Mechanics and Hydraulic Machines", Laxmi Publications (P)
	Ltd., New Delhi.
2.	K. Subramanya, Open channel Flow, Tata McGraw Hill.
3.	· · · · · · · · · · · · · · · · · · ·
	Pvt Ltd, Hyderabad. 3rd Edition 2009.
4.	C. S. P. Ojha, R. Berndtsson and P. N. Chadramouli, "Fluid Mechanics and Machinery",
	Oxford University Press, 2010.
	Banga& Sharma, "Hydraulic Machines", Khanna Publishers.
	e Learning Resources:
1.	https://www.coursera.org/courses?query=fluid%20mechanics
2.	https://www.udemy.com/topic/fluid-mechanics/
3.	https://onlinecourses.nptel.ac.in/noc21_cc31/preview
4.	https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-01-unified-engineering-i-ii-iii-
_	iv-fall-2005-spring-2006/fluid-mechanics/

5. http://lms.msitonline.org/mod/folder/view.php?id=138

Course Code	Manufacturing Pro	cesses	L	Т	P	С
20A03301T		1	3	0	0	3
Pre-requisite	NIL	Semester		II	[
Course Objectives:						
	e the students to working principle of	of different metal cast	ing pro	ocesses	and g	ating
system.			01		C	
	nowledge on plastic deformation,	cold and hot workin	g proc	ess, wo	orking	of a
	and types, extrusion processes.					
	nciples of forging, tools and dies, we				1.	
	fundamental understanding on class		ng proc	cesses,	WORK1	ng of
	es of welding processes and welding nowledge on manufacturing methods		and no	wder n	netallu	rav
	the basic concepts of Unconventior			waern	Ictanu	ngy.
· To muoduce	the busic concepts of cheon vention		505.			
Course Outcomes (
	urse, the student will be able to					
	different metal casting processes ar		2)			
2	king of various welding processes. (
	forces and power requirements in re- inciples of various forging operation					
	nanufacturing methods of plastics, c		netallu	rov (I	1)	
	erent unconventional processes and t			159. (L	1)	
		(/			
UNIT - I	Casting Pr			8	Hrs	
	rtance and selection of manufacturin			~		
	ing process, process steps; pattern					
	blidification of pure metal and all			es: Sn	en cas	sting,
UNIT - II	lie casting, centrifugal casting, castin Metal Forming		es.	81	Hrs	
	of plastic deformation, hot and c		als me			metal
	inciple, types of rolling mill and pro					
	sion: Basic extrusion process and					
extrusion, wire draw	ing, tube drawing.					
	g, tools and dies. Types: Smith for					
	defects. Sheet metal forming: N	Iechanics of sheet n	netal w	orking	, blan	king,
piercing, bending, sta		D		0	TT	
UNIT - III	Metal Joining				Hrs	
	elding processes, types of welds a geometry, submerged arc weldin					
	s, advantages and disadvantages o					
	ig, Electron Beam Welding and F					
	nd brazing: Types and their application					
	· · · · · · · · · · · · · · · · · ·	č				
UNIT - IV	Plastic Processing, Ceramics and				Hrs	
	perties and their applications, proces					
e 1	ession molding, injection molding,	thermotorming, rotat	ional n	nolding	, and	blow
molding	ation of annual material		. ,.			
Ceramics: Classification of ceramic materials, properties and their application, ceramic powder						
preparation; Process	sing of ceramic parts: Pressing,					
preparation; Process ceramics: Coatings, f	sing of ceramic parts: Pressing,	casting, sintering; S				

MECHANICAL ENGINEERING

UNIT - V	Unconventional Machining Processes	10 Hrs
	esses parameters of Electrical discharge machining (EDM), e	
	Laser beam machining (LBM), plasma arc machining (PAM),	electron beam
machining, Abrasiv	e jet machining (AJM), water jet machining (WJM),	and ultrasonic
machining(UM)		
Textbooks:		
1. Rao P.N., Ma	anufacturing Technology - Volume I, 5/e, McGraw-Hill Education	, 2018.
2. Kalpakjain S	S and Schmid S.R., Manufacturing Engineering and Technology	y, 7/e, Pearson,
2018.		
Reference Books:		
1. Introduction to P	hysical Metallurgy by Sidney H.Avner	
2. Millek P. Groov	er, Fundamentals of Modern Manufacturing: Materials, Processe	es and Systems,
4/e, John Wiley a	and Sons Inc, 2010.	-
3. Sharma P.C., A	Fext book of Production Technology, 8/e, S Chand Publishing, 201	4.
Online Learning Re	esources:	

1. https://www.digimat.in/nptel/courses/video/112107145/L01.html

2. https://www.digimat.in/nptel/courses/video/112105126/L01.html

	Thermodynamic	S		<u>T</u>	P	<u>C</u>	
20A03302 Pre-requisite	NIL	Semester	3	<u>0</u>	0	3	
-	INIL	Semester	r III				
Course Objectives:			0	-			
	e the concepts of heat, work, energy a	and governing rules	for con	versior	n of o	ne forr	
to other.		11 • 1	6.4	1			
	elationships between properties of ma					1	
	concept of entropy for identifying t	ne disorder and leas	sidility	or a the	ermoc	iynami	
process.To introduce	the concept of available energy for n	navimum work conv	ersion				
	nowledge on steam properties.		c151011.				
	undamental concepts of air standard c	cycles used in IC eng	ines an	d gas ti	ırbine	es.	
•	-			0			
Course Outcomes (
	course, the student will be able to:	· 1 · 1 ·		6.1		• ,	
	the importance of thermodynamic pro	perties related to col	iversio	1 of nea	at ene	rgy int	
• Apply the	laws of thermodynamics to boile	rs heat numps r	afrigara	tore k	ant d	angina	
	and nozzles. (L3)	is, near pumps, n	emgera	1015, 1	icat (engine	
	properties to design steam based cor	nponents. (L4)					
Analyze then	modynamic relations and air standard	l cycles. (L5)					
,		•					
UNIT - I	First law of Thermodynamics				10 I	Hrs	
Introduction Racia							
	c Concepts: Macroscopic and micros				ermod	lynami	
terms, quasi – static	process, point and path function, forr				ermod	lynami	
terms, quasi – static of thermodynamics a	process, point and path function, forr and Temperature measurement.	ns of energy, ideal g	as and	real ga	ermoc s, Zer	lynami oth lav	
terms, quasi – static of thermodynamics a Joule's experiment	process, point and path function, forr and Temperature measurement. - first law of thermodynamics, corol	ns of energy, ideal g laries-perpetual mot	gas and ion ma	real ga chines	ermoc s, Zer	lynami oth lav	
terms, quasi – static of thermodynamics a Joule's experiment	process, point and path function, forr and Temperature measurement.	ns of energy, ideal g laries-perpetual mot	gas and ion ma	real ga chines	ermoc s, Zer	lynami oth lav	
terms, quasi – static of thermodynamics a Joule's experiment - first law applied to n UNIT - II	process, point and path function, forr and Temperature measurement. first law of thermodynamics, corol on-flow and flow process- limitations Second Law of Thermodynamics	ns of energy, ideal g laries-perpetual mot of first law of therm	gas and ion ma nodynar	real ga chines nics.	ermoc s, Zer of fir	lynami oth lav st kind rs	
terms, quasi – static of thermodynamics a Joule's experiment - first law applied to n UNIT - II Kelvin - Planck stat	process, point and path function, forr and Temperature measurement. - first law of thermodynamics, corol on-flow and flow process- limitations Second Law of Thermodynamics ement and Clausius statement and th	ns of energy, ideal g laries-perpetual mot of first law of therm neir equivalence, con	as and ion ma odynar	real ga chines nics.	ermoc s, Zer of fir 8 H petual	lynami oth lav st kind rs motio	
terms, quasi – static of thermodynamics a Joule's experiment - first law applied to n UNIT - II Kelvin - Planck stat machines of second	process, point and path function, forr and Temperature measurement. - first law of thermodynamics, corol on-flow and flow process- limitations Second Law of Thermodynamics ement and Clausius statement and th kind - reversibility and irreversibility	ns of energy, ideal g laries-perpetual mot of first law of therm neir equivalence, con ty, cause of irrevers	as and ion ma odynar	real ga chines nics.	ermoc s, Zer of fir 8 H petual	lynami oth lav st kind rs motio	
terms, quasi – static of thermodynamics a Joule's experiment - first law applied to n UNIT - II Kelvin - Planck stat machines of second	process, point and path function, forr and Temperature measurement. - first law of thermodynamics, corol on-flow and flow process- limitations Second Law of Thermodynamics ement and Clausius statement and th	ns of energy, ideal g laries-perpetual mot of first law of therm neir equivalence, con ty, cause of irrevers	as and ion ma odynar	real ga chines nics.	ermoc s, Zer of fir 8 H petual	lynami oth lav st kind rs motio	
terms, quasi – static of thermodynamics a Joule's experiment - first law applied to n UNIT - II Kelvin - Planck stat machines of second engine, heat pump ar	process, point and path function, forr and Temperature measurement. - first law of thermodynamics, corol on-flow and flow process- limitations Second Law of Thermodynamics ement and Clausius statement and the kind - reversibility and irreversibility and refrigerator, Carnot theorem, Carno	ns of energy, ideal g laries-perpetual mot of first law of therm neir equivalence, con ty, cause of irrevers ot efficiency.	as and ion ma odynar	real ga chines nics.	ermoc s, Zer of fir 8 H betual ot cyc	lynami oth lav rst kind rs motio ele, hea	
terms, quasi – static of thermodynamics a Joule's experiment - first law applied to n UNIT - II Kelvin - Planck stat machines of second engine, heat pump ar UNIT - III	process, point and path function, forr and Temperature measurement. - first law of thermodynamics, corol on-flow and flow process- limitations Second Law of Thermodynamics ement and Clausius statement and th kind - reversibility and irreversibility and refrigerator, Carnot theorem, Carnot Entropy, Availability and Irreversibility	ns of energy, ideal g laries-perpetual mot of first law of therm neir equivalence, con ty, cause of irrevers of efficiency.	as and ion ma nodynar collaries ibility	real ga chines nics. - perp - Carno	ermod s, Zer of fir 8 H betual ot cyc 8 H	lynami oth lav rst kind rs motio ele, hea	
terms, quasi – static of thermodynamics a Joule's experiment - first law applied to n UNIT - II Kelvin - Planck stat machines of second engine, heat pump ar UNIT - III Clausius inequality -	process, point and path function, forr and Temperature measurement. - first law of thermodynamics, corol on-flow and flow process- limitations Second Law of Thermodynamics ement and Clausius statement and the kind - reversibility and irreversibility and refrigerator, Carnot theorem, Carnot Entropy, Availability and Irrevers Concept of Entropy- entropy equation	ns of energy, ideal g laries-perpetual mot of first law of therm neir equivalence, con ty, cause of irrevers of efficiency. sibility n for different proces	as and ion ma odynar collaries ibility sses and	real ga chines nics. - perr - Carno I syster	ermoc s, Zer of fir 8 H betual bt cyc 8 H ns.	lynami roth law rst kind rs motio cle, hea rs	
terms, quasi – static of thermodynamics a Joule's experiment - first law applied to n UNIT - II Kelvin - Planck stat machines of second engine, heat pump ar UNIT - III Clausius inequality - Definition of exergy	process, point and path function, forr and Temperature measurement. - first law of thermodynamics, corol on-flow and flow process- limitations Second Law of Thermodynamics ement and Clausius statement and the kind - reversibility and irreversibility and refrigerator, Carnot theorem, Carnot Entropy, Availability and Irrevers Concept of Entropy- entropy equation and anergy, expressions for available	ns of energy, ideal g laries-perpetual mot of first law of therm neir equivalence, con ty, cause of irrevers of efficiency. sibility n for different proces	as and ion ma odynar collaries ibility sses and	real ga chines nics. - perr - Carno I syster	ermoc s, Zer of fir 8 H betual bt cyc 8 H ns.	lynami roth lav rst kind rs motio cle, hea rs	
terms, quasi – static of thermodynamics a Joule's experiment - first law applied to n <u>UNIT - II</u> Kelvin - Planck stat machines of second engine, heat pump ar <u>UNIT - III</u> Clausius inequality - Definition of exergy flow, non-flow proce	process, point and path function, forr and Temperature measurement. - first law of thermodynamics, corol on-flow and flow process- limitations Second Law of Thermodynamics ement and Clausius statement and the kind - reversibility and irreversibility and refrigerator, Carnot theorem, Carnot Entropy, Availability and Irrevers Concept of Entropy- entropy equation	ns of energy, ideal g laries-perpetual mot of first law of therm neir equivalence, con ty, cause of irrevers ot efficiency. sibility n for different proces pility and irreversib	as and ion ma iodynar collaries ibility sses and ility. A	real ga chines nics. - perp - Carno I syster vailabil	ermoc s, Zer of fir 8 H betual bt cyc 8 H ns.	lynami roth lav rst kind rs motic cle, hea rs	
terms, quasi – static of thermodynamics a Joule's experiment - first law applied to n UNIT - II Kelvin - Planck stat machines of second engine, heat pump ar UNIT - III Clausius inequality - Definition of exergy flow, non-flow proce Maxwell relations, T	process, point and path function, forr and Temperature measurement. first law of thermodynamics, corol on-flow and flow process- limitations Second Law of Thermodynamics ement and Clausius statement and th kind - reversibility and irreversibility and refrigerator, Carnot theorem, Carnot Entropy, Availability and Irrevers Concept of Entropy- entropy equation and anergy, expressions for availability esses and irreversibility. dS equations difference in heat capac	ns of energy, ideal g laries-perpetual mot of first law of therm neir equivalence, con ty, cause of irrevers ot efficiency. sibility n for different proces oility and irreversib- ities, ratio of heat ca	as and ion ma iodynar collaries ibility sses and ility. A	real ga chines nics. - perp - Carno I syster vailabil	ermoc s, Zer of fir 8 H betual bt cyc 8 H ns. lity in	lynami oth lav rst kind rs motio ele, hea rs n stead	
terms, quasi – static of thermodynamics a Joule's experiment - first law applied to n UNIT - II Kelvin - Planck stat machines of second engine, heat pump ar UNIT - III Clausius inequality - Definition of exergy flow, non-flow proce Maxwell relations, T UNIT - IV	process, point and path function, forr and Temperature measurement. - first law of thermodynamics, corol on-flow and flow process- limitations Second Law of Thermodynamics ement and Clausius statement and the kind - reversibility and irreversibility and refrigerator, Carnot theorem, Carnot Entropy, Availability and Irrevers Concept of Entropy- entropy equation and anergy, expressions for available esses and irreversibility. dS equations difference in heat capac Properties of Steam and use of Steam	ns of energy, ideal g laries-perpetual mot of first law of therm neir equivalence, con ty, cause of irrevers of efficiency. sibility n for different process pility and irreversib ities, ratio of heat ca eam Tables	as and ion ma odynar collaries ibility sses and ility. A pacities	real ga chines nics. - perr - Carno I syster vailabil	s, Zer of fir 8 H betual bt cyc 8 H ns. lity in	lynami roth lav rst kind rs motio ele, hea rs n stead	
terms, quasi – static of thermodynamics a Joule's experiment - first law applied to n UNIT - II Kelvin - Planck stat machines of second engine, heat pump ar UNIT - III Clausius inequality - Definition of exergy flow, non-flow proce Maxwell relations, T UNIT - IV Pure Substances, P- [*]	process, point and path function, forr and Temperature measurement. - first law of thermodynamics, corol on-flow and flow process- limitations Second Law of Thermodynamics ement and Clausius statement and the kind - reversibility and irreversibility and refrigerator, Carnot theorem, Carnot Entropy, Availability and Irreverse Concept of Entropy- entropy equation and anergy, expressions for available esses and irreversibility. dS equations difference in heat capace Properties of Steam and use of Steaverse V-T surfaces, T-s and h-s diagram, N	ns of energy, ideal g laries-perpetual mot of first law of therm neir equivalence, con ty, cause of irrevers ot efficiency. sibility n for different proces bility and irreversib ities, ratio of heat ca eam Tables Mollier chart, drynes	as and ion ma iodynar collaries ibility sses and ility. A pacities ss fract	real ga chines nics. - perp - Carno I syster vailabil	s, Zer of fir 8 H ot cyc 8 H ns. ity in 8 H operty	lynami roth lav rst kind rs motio cle, hea rs n stead <u>rs</u> / tables	
terms, quasi – static of thermodynamics a Joule's experiment - first law applied to n <u>UNIT - II</u> Kelvin - Planck stat machines of second engine, heat pump ar <u>UNIT - III</u> Clausius inequality - Definition of exergy flow, non-flow proce Maxwell relations, T <u>UNIT - IV</u> Pure Substances, P-' analysis of steam un	process, point and path function, forr and Temperature measurement. - first law of thermodynamics, corol on-flow and flow process- limitations Second Law of Thermodynamics ement and Clausius statement and the kind - reversibility and irreversibility and refrigerator, Carnot theorem, Carnot Entropy, Availability and Irreversion Concept of Entropy- entropy equation y and anergy, expressions for available esses and irreversibility. dS equations difference in heat capac Properties of Steam and use of Steam V-T surfaces, T-s and h-s diagram, M dergoing various thermodynamic pro-	ns of energy, ideal g laries-perpetual mot of first law of therm neir equivalence, con ty, cause of irrevers ot efficiency. sibility n for different proces bility and irreversib ities, ratio of heat ca eam Tables Mollier chart, drynes occesses using Mollie	as and ion ma iodynar collaries ibility sses and ility. A pacities ss fract	real ga chines nics. - perp - Carno I syster vailabil	s, Zer of fir 8 H ot cyc 8 H ns. ity in 8 H operty	lynami roth lav rst kind rs motio cle, hea rs n stead <u>rs</u> / tables	
terms, quasi – static of thermodynamics a Joule's experiment - first law applied to n <u>UNIT - II</u> Kelvin - Planck stat machines of second engine, heat pump ar <u>UNIT - III</u> Clausius inequality - Definition of exergy flow, non-flow proce Maxwell relations, T <u>UNIT - IV</u> Pure Substances, P-' analysis of steam un	process, point and path function, forr and Temperature measurement. - first law of thermodynamics, corol on-flow and flow process- limitations Second Law of Thermodynamics ement and Clausius statement and the kind - reversibility and irreversibility and refrigerator, Carnot theorem, Carnot Entropy, Availability and Irreverse Concept of Entropy- entropy equation and anergy, expressions for available esses and irreversibility. dS equations difference in heat capace Properties of Steam and use of Steaverse V-T surfaces, T-s and h-s diagram, N	ns of energy, ideal g laries-perpetual mot of first law of therm neir equivalence, con ty, cause of irrevers ot efficiency. sibility n for different proces bility and irreversib ities, ratio of heat ca eam Tables Mollier chart, drynes occesses using Mollie	as and ion ma iodynar collaries ibility sses and ility. A pacities ss fract	real ga chines nics. - perp - Carno I syster vailabil	s, Zer of fir 8 H ot cyc 8 H ns. ity in 8 H operty	lynami roth lav rst kind rs motio cle, hea rs n stead <u>rs</u> / tables	
terms, quasi – static of thermodynamics a Joule's experiment - first law applied to n UNIT - II Kelvin - Planck stat machines of second engine, heat pump ar UNIT - III Clausius inequality - Definition of exergy flow, non-flow proce Maxwell relations, T UNIT - IV Pure Substances, P analysis of steam un Energy equation, Jou	process, point and path function, forr and Temperature measurement. - first law of thermodynamics, corol on-flow and flow process- limitations Second Law of Thermodynamics ement and Clausius statement and th kind - reversibility and irreversibility and refrigerator, Carnot theorem, Carnot Entropy, Availability and Irreverse Concept of Entropy- entropy equation and anergy, expressions for availables esses and irreversibility. dS equations difference in heat capac Properties of Steam and use of Stea V-T surfaces, T-s and h-s diagram, M dergoing various thermodynamic pro- tile Thompson coefficient Clausius - C	ns of energy, ideal g laries-perpetual mot of first law of therm neir equivalence, con ty, cause of irrevers ot efficiency. sibility n for different proces bility and irreversib ities, ratio of heat ca eam Tables Mollier chart, drynes occesses using Mollie	as and ion ma iodynar collaries ibility sses and ility. A pacities ss fract	real ga chines nics. - perp - Carno I syster vailabil	s, Zer of fir 8 H ot cyc 8 H ns. ity in 8 H operty	lynami oth lav rst kind rs motio ele, hea rs n stead rs rimetr	
terms, quasi – static of thermodynamics a Joule's experiment - first law applied to n UNIT - II Kelvin - Planck stat machines of second engine, heat pump ar UNIT - III Clausius inequality - Definition of exergy flow, non-flow proce Maxwell relations, T UNIT - IV Pure Substances, P- analysis of steam un Energy equation, Jou	 process, point and path function, forrand Temperature measurement. first law of thermodynamics, corol on-flow and flow process- limitations Second Law of Thermodynamics ement and Clausius statement and the kind - reversibility and irreversibility and irreversibility and refrigerator, Carnot theorem, Carnot Entropy, Availability and Irreversion for availablesses and irreversibility. dS equations difference in heat capace Properties of Steam and use of Core and properties of Steam and use o	ns of energy, ideal g laries-perpetual mot of first law of therm heir equivalence, con ty, cause of irrevers of efficiency. sibility n for different proces bility and irreversib ities, ratio of heat ca cam Tables Mollier chart, drynes becesses using Mollie lapeyron equation.	as and ion ma nodynar collaries ibility sses and ility. A pacities ss fract r chart-	real ga chines nics. - perp - Carno I syster vailabil - steam	ermoc s, Zer of fir 8 H betual bt cyc 8 H br s. lity in 8 H operty a calo	lynami oth lav rst kind rs motio ele, hea rs n stead rs rimetry rs	
terms, quasi – static of thermodynamics a Joule's experiment - first law applied to n UNIT - II Kelvin - Planck stat machines of second engine, heat pump ar UNIT - III Clausius inequality - Definition of exergy flow, non-flow proce Maxwell relations, T UNIT - IV Pure Substances, P-' analysis of steam un Energy equation, Jou UNIT - V Otto, Diesel and du	process, point and path function, forr and Temperature measurement. - first law of thermodynamics, corol on-flow and flow process- limitations Second Law of Thermodynamics ement and Clausius statement and th kind - reversibility and irreversibility and refrigerator, Carnot theorem, Carnot Entropy, Availability and Irreverse Concept of Entropy- entropy equation and anergy, expressions for availability. Concept of Entropy- entropy equation and anergy, expressions for availability. Concept of Steam and use of Steam V-T surfaces, T-s and h-s diagram, I dergoing various thermodynamic pro- tile Thompson coefficient Clausius - C Air Standard Cycles al cycles, P-V and T -S diagrams	ns of energy, ideal g laries-perpetual mot of first law of therm neir equivalence, con ty, cause of irrevers of efficiency. sibility n for different proces oility and irreversib ities, ratio of heat ca eam Tables Mollier chart, drynes occesses using Mollie lapeyron equation.	as and ion ma nodynar collaries ibility sses and ility. A pacities ss fract r chart-	real ga chines nics. - perp - Carno I syster vailabil - ion, pro	ermoc s, Zer of fir 8 H betual bt cyc 8 H striky in 8 H perty calor 8 H	lynami oth lav rst kind rs motio ele, hea rs rs rs rs rtable rimetr	
terms, quasi – static of thermodynamics a Joule's experiment - first law applied to n UNIT - II Kelvin - Planck stat machines of second engine, heat pump ar UNIT - III Clausius inequality - Definition of exergy flow, non-flow proce Maxwell relations, T UNIT - IV Pure Substances, P-' analysis of steam un Energy equation, Jou UNIT - V Otto, Diesel and du	 process, point and path function, forrand Temperature measurement. first law of thermodynamics, corol on-flow and flow process- limitations Second Law of Thermodynamics ement and Clausius statement and the kind - reversibility and irreversibility and irreversibility and refrigerator, Carnot theorem, Carnot Entropy, Availability and Irreversion for availablesses and irreversibility. dS equations difference in heat capace Properties of Steam and use of Core and properties of Steam and use o	ns of energy, ideal g laries-perpetual mot of first law of therm neir equivalence, con ty, cause of irrevers of efficiency. sibility n for different proces oility and irreversib ities, ratio of heat ca eam Tables Mollier chart, drynes occesses using Mollie lapeyron equation.	as and ion ma nodynar collaries ibility sses and ility. A pacities ss fract r chart-	real ga chines nics. - perp - Carno I syster vailabil - ion, pro	ermoc s, Zer of fir 8 H betual bt cyc 8 H striky in 8 H perty calor 8 H	lynami roth law rst kind rs motio ele, hea rs rs rs rimetry rimetry	

MECHANICAL ENGINEERING

Textbooks:

- 1. P.K.Nag, Engineering Thermodynamics, 5/e, Tata McGraw Hill, 2013.
- 2. Yunus A. Cengel, Michaela A. Boles, Thermodynamics, 7/e, Tata McGraw Hill, 2011.

Reference Books:

- 1. J.B.Jones and G.A.Hawkins, Introduction to Thermodynamics, 2/e, John Wiley & Sons, 2012.
- 2. Moran, Michael J. and Howard N. Shapiro, Fundamentals of Engineering Thermodynamics, 3/e, Wiley, 2015
- 3. R.K. Rajput, S.Chand& Co., Thermal Engineering, 6/e, Laxmi publications, 2010

Online Learning Resources:

- 1. <u>https://nptel.ac.in/courses/112/105/112105266/</u>
- 2. <u>https://nptel.ac.in/courses/112/104/112104113/</u>

MECHANICAL ENGINEERING

Course Code	Mechanics of	Materials	L 3	Т	Р	С
20A01305T	A01305T			0	0	3
Pre-requisite	NIL	Semester			III	
Course Objectives:						
	ne basics of stresses and strains					
	ar force and bending moment d		ns.			
	e Behaviour of members and '	Torsional forces				
	ne Behaviour of cylinders					
• Understand the	ne stresses developing in curve	d beams.				
Course Outcomes (C	<u>'O)</u> .					
	sses and strains					
	SF and BM diagrams for variou	is beams under different	loadin	g con	ditions	
	e resistance and deformation					
and springs.			J			
	design thin, thick cylinders.					
	resses in curved bars.					
	alysis of stress and strain					
	ds - self weight - internal stres					
	- relationship between elastic					
	constant and varying sections					
	al stresses - Mohr's circle of s	tress - principal strains	- strair	n roset	te – pi	rincipal
stress/strain problem a	as an eigenvalue problem.					
	nding moment and shear force		6		1	. 1
	beams - shear force and be					
	ilever beams - relationship co					
bending moment - site	ear force and bending moment	ulagranis for statically c	leteriii	nate p		ames.
UNIT - III To	rsion and Springs					
	stresses and deformation in	circular and hollows	shafts	– Ste	pped	shafts-
	xed at the both ends – Stresses					
carriage springs.		1 0				1 0 /
	in Cylinders, Spheres and Thic	k Cylinders				
	frical shell due to internal pres		d longi	tudina	1 stres	ses and
deformation in thin	cylinders – spherical shells	subjected to internal j	pressur	e –De	eforma	tion in
spherical shells - Lan	ne"s theory – Application of th	eories of failure.				
	nding of curved bars & Unsym			o.uo - 1	1	
	mall initial curvature, Winkl				0	initial
	of Crane hooks, Chain links, c					Shaar
	mmetrical bending, Stresses a	and defiection in unsyl	inneuri	car be	nung,	, snear
center for angle, Char						
Textbooks:						
	s of Material – J. M. Gere and					
	P., Mechanics of Materials, Pr	entice Hall India, New]	Delhi, 2	2002.		
Reference Books :						
	d Mechanics of Materials–A. P	. Boresi and O. M. Side	bottom	–John	Wiley	r &
Sons						

2. Strength of Materials – R. K. Rajput – S. Chand & Company

MECHANICAL ENGINEERING

- 3. Beer, F.P., Johnston, E.R. and DeWolf, J.T., Mechanics of Materials, 3rd ed., Tata McGraw-Hill
- 4. Strength of Material Dr. Sadhu Singh Khanna Publishers
- 5. Strength of Material, Vol. I and II S. P. Timoshenko EWP Press

Online Learning Resources:

- 1. https://nptel.ac.in/courses/112/107/112107146/
- 2. <u>https://ocw.mit.edu/courses/materials-science-and-engineering/3-11-mechanics-of-materials-fall-1999/</u>
- 3. <u>https://www.coursera.org/courses?query=mechanics%20of%20materials</u>
- 4. https://www.udemy.com/course/strengthofmaterials/

Course Code						
20A01302P	MACHINES I		0	0	3	1.5
	(Common to Civil & I	,				
Pre-requisite	NIL	Semester		I	II	
Course Objectives						
	g this laboratory, the student will be a	ale to know the fluid flo	w mag	curar	nonte	hv
	fferent types flow measurement devic					
and motors.	increment types now incustrement device	es and working principi	05 01	unou	is pui	mps
Course Outcomes	(CO):					
	g the various tests in this laboratory th	e student will be able to	know	the r	orinci	ples
	neasuring devices and head loss due to					
	principles of various pumps and motor				Г	1
List of Experimen						
	n of Bernoulli's equation.					
	of Orifice meter					
	tion of Coefficient of discharge for a s	mall orifice by constant	head	meth	hc	
	tion of Coefficient of discharge for a s					
	tion of Coefficient of discharge for an					
method.		······································				
	tion of Coefficient of discharge for an	external mouth piece by	/ varia	ble h	ead	
method.	-					
	of contracted Rectangular Notch.					
	of contracted Triangular Notch. Dete		ctor			
	ion of loss of head in a sudden contra					
	ion of loss of head in a sudden Expan	sion.				
	ce test on Impulse turbines					
	ce test on reaction turbines (Francis an	id Kaplan Turbines)				
14. Impact of j		ation of anarating point	anda	ff: .: .		
References:	ce test on centrifugal pumps, determin	ation of operating point	ande	Incle	ncy	
	nanics & Hydraulic Machines A Lab N	Janual by To Desmukh	(Auth	or)		
	plications (P) Ltd	Tanual Oy <u>TS Desinukii</u>	(Aum	01 <i>)</i> ,		
	nanics & Machinery Laboratory Manu	al by N Kumara Swamy	/ (Auf	hor).		
	Books Distributors		(1 100	,		
	al of Fluid Mechanics & Machines by	Gupta, Chandra (Autho	or),			
cbspd (Put	•					
	esources/Virtual Labs:					
1 ht	p://eerc03-iiith.vlabs.ac.in/					

Cou	ırse Code	Manufacturing P	rocesses Lab	L	L T P C				
20	A03301P			0	0 0 3 1.5				
Pre	-requisite	NIL	Semester	III					
Cours	e Objectives:								
•	Acquire pra- machining P	ctical knowledge on Metal Ca rocesses	sting, Welding, Press V	Working	and u	nconv	entional		
Cours	e Outcomes (CO):							
At the	end of the lab	the student will be able to							
•		ferent types of components usin		g techniq	ues. (L	6)			
•	Adapt uncon	ventional manufacturing metho	ods. (L6)						
List of	Experiments	•							
1.	METAL C	ASTING							
		Design and pouring time and sol							
		operties Testing – Exercise for S							
		, Melting and Casting for ferro	us/ non ferrous materials	5.					
2.	WELDING								
	a) TIG We								
	b) MIG W								
		stir welding.							
•		er Special Welding Processes.							
3.		CAL PRESS WORKING		1	10 1	•	1.		
		ol: Blanking and Piercing operation		bound an	d Comt	onatio	on dies.		
		in torging Doon Drowing and	Hytrusion operations						
4.		ie forging, Deep Drawing and I							
	UN CONVE	ENTIONAL MANUFACTUN	RING PRÔCESSES						
	UN CONVEa)Electro		RING PROCESSES Wire cut EDM						

Course Code 20A01305P	Mechanics of Materia	L T P C 0 0 3 1.5	
	NIL	Semester	
Pre-requisite	INIL	Semester	111
Course Objectives:			
• By performing thi various materials	s laboratory, the student will be a	ble to know the st	ructural behavior of
Course Outcomes (CO):			
• By performing the	e various tests in this laboratory	the student will b	e able to know the
structural behavior	of various structural elements whe	n subjected to exte	rnal loads
List of Experiments:			
1. Tension test.			
2. Bending test on ((Steel/Wood) Cantilever beam.		
3. Bending test on s	simply supported beam.		
4. Torsion test.			
5. <u>Vickers Hardnes</u>	<u>s Test</u>		
6. <u>Rockwell Hardr</u>			
7. Brinell Hardnes			
	est on Open coiled springs		
	Closely coiled springs		
10. Compression tes			
11. Izod Impact test			
12. Charpy Impact to			
13. Shear test on me			
	t on Timber Specimen		
15. Use of electrical	l resistance strain gauges.		
16. Continuous beau			
	he above equipments		
References:			
1. Strength of Mater	rials Lab Manual by <u>Anand Jayak</u>	<u>umar A</u> , Notion P	ress
Online Learning Resources	s/Virtual Labs:		
1. <u>http://sm-nitk.vla</u>			

MECHANICAL ENGINEERING

Course Code 20A05305	Application D	evelopment with Python	L T P C 1 0 2 2			
Pre-requisite	NIL	Semester				
Course Objectives:						
	cepts of software engine tance of Databases in app	ering and life cycle models				
3. Acquire programming		bication Development				
	portance of Object-orient	ted Programming				
Course Outcomes (CO):						
Students should be able to	aoftwara raquiramanta ar	acification and anable to write	SDS documents			
1. Identify the issues in software requirements specification and enable to write SRS documents for software development problems						
2. Explore the use of Object oriented concepts to solve Real-life problems						
3. Design database for any real-world problem						
4. Solve mathematical problems using Python programming language						
Module 1. Basic concepts in software engineering and software project management						
Basic concepts: abstraction versus decomposition, the evolution of software engineering techniques, Software development life cycle						
Software project management		oject scheduling				
Task:						
1. Identifying the Requirement	its from Problem Stateme	ents				
 Module 2. Basic Concepts of Databases Database systems applications, Purpose of Database Systems, view of Data, Database Languages, Relational Databases, <u>Data Definition Language(DDL) Statements: (Create table, Alter table, Drop table)</u>, <u>Data Manipulation Language(DML) Statements</u> Task: 1. Implement <u>Data Definition Language(DDL) Statements: (Create table, Alter table, Drop table)</u> 						
2. Implement Data Manipula						
Module 3. Python Programming: Introduction to Python: Features of Python, Data types, Operators, Input and output, Control Statements, Looping statements Python Data Structures: Lists, Dictionaries, Tuples.						
Strings: Creating strings and basic operations on strings, string testing methods.						
Functions: Defining a function- Calling a function- Types of functions-Function Arguments-Anonymous functions- Global and local variables						
OOPS Concepts; Classes and	1 objects- Attributes- Inh	eritance- Overloading- Overridi	ng- Data hiding			
		ing own module as well as n python Programming using fu				
Working with Data in Pythe file- Reading and writing files		Reading data from keyboard- Op ta with Pandas-Numpy	ening and closing			

Tasks: 1. OPERATORS

MECHANICAL ENGINEERING

a. Read a list of numbers and write a program to check whether a particular element is present or not using membership operators.

b. Read your name and age and write a program to display the year in which you will turn 100 years old.

c. Read radius and height of a cone and write a program to find the volume of a cone.

d. Write a program to compute distance between two points taking input from the user (Hint: use Pythagorean theorem)

2. CONTROL STRUCTURES

a. Read your email id and write a program to display the no of vowels, consonants, digits and white spaces in it using if...elif...else statement.

b. Write a program to create and display a dictionary by storing the antonyms of words. Find the antonym of a particular word given by the user from the dictionary using while loop.

c. Write a Program to find the sum of a Series $1/1! + 2/2! + 3/3! + 4/4! + \dots + n/n!$. (Input :n = 5, Output : 2.70833)

d. In number theory, an abundant number or excessive number is a number for which the sum of its proper divisors is greater than the number itself. Write a program to find out, if the given number is abundant. (Input: 12, Sum of divisors of 12 = 1 + 2 + 3 + 4 + 6 = 16, sum of divisors 16 >original number 12)

3: LIST

a. Read a list of numbers and print the numbers divisible by x but not by y (Assume x = 4 and y = 5).

b. Read a list of numbers and print the sum of odd integers and even integers from the list.(Ex: [23, 10, 15, 14, 63], odd numbers sum = 101, even numbers sum = 24)

c. Read a list of numbers and print numbers present in odd index position. (Ex: [10, 25, 30, 47, 56, 84, 96], The numbers in odd index position: 25 47 84).

d. Read a list of numbers and remove the duplicate numbers from it. (Ex: Enter a list with duplicate elements: 10 20 40 10 50 30 20 10 80, The unique list is: [10, 20, 30, 40, 50, 80])

4: TUPLE

a. Given a list of tuples. Write a program to find tuples which have all elements divisible by K from a list of tuples. test_list = [(6, 24, 12), (60, 12, 6), (12, 18, 21)], K = 6, Output : [(6, 24, 12), (60, 12, 6)] b. Given a list of tuples. Write a program to filter all uppercase characters tuples from given list of tuples. (Input: test_list = [("GFG", "IS", "BEST"), ("GFg", "AVERAGE"), ("GfG",), ("Gfg", "CS")], Output : [(,,GFG", ,,IS", ,,BEST")].

c. Given a tuple and a list as input, write a program to count the occurrences of all items of the list in the tuple. (Input : tuple = ('a', 'a', 'c', 'b', 'd'), list = ['a', 'b'], Output : 3)

5: SET

a. Write a program to generate and print a dictionary that contains a number (between 1 and n) in the form (x, x^*x) .

b. Write a program to perform union, intersection and difference using Set A and Set B.

c. Write a program to count number of vowels using sets in given string (Input : "Hello World", Output: No. of vowels : 3)

d. Write a program to form concatenated string by taking uncommon characters from two strings using set concept (Input : S1 = "aacdb", S2 = "gafd", Output : "cbgf").

6: DICTIONARY

a. Write a program to do the following operations:

i. Create a empty dictionary with dict() method

ii. Add elements one at a time

iii. Update existing key"s value

iv. Access an element using a key and also get() method

v. Deleting a key value using del() method

b. Write a program to create a dictionary and apply the following methods:

i. pop() method

MECHANICAL ENGINEERING

ii. popitem() method

iii. clear() method

- c. Given a dictionary, write a program to find the sum of all items in the dictionary.
- d. Write a program to merge two dictionaries using update() method.

7: STRINGS

a. Given a string, write a program to check if the string is symmetrical and palindrome or not. A string is said to be symmetrical if both the halves of the string are the same and a string is said to be a palindrome string if one half of the string is the reverse of the other half or if a string appears same when read forward or backward.

b. Write a program to read a string and count the number of vowel letters and print all letters except 'e' and 's'.

c. Write a program to read a line of text and remove the initial word from given text. (Hint: Use split() method, Input : India is my country. Output : is my country)

d. Write a program to read a string and count how many times each letter appears. (Histogram).

8: USER DEFINED FUNCTIONS

a. A generator is a function that produces a sequence of results instead of a single value. Write a generator function for Fibonacci numbers up to n.

b. Write a function merge_dict(dict1, dict2) to merge two Python dictionaries.

c. Write a fact() function to compute the factorial of a given positive number.

d. Given a list of n elements, write a linear_search() function to search a given element x in a list.

9: BUILT-IN FUNCTIONS

a. Write a program to demonstrate the working of built-in statistical functions mean(), mode(), median() by importing statistics library.

b. Write a program to demonstrate the working of built-in trignometric functions sin(), cos(), tan(), hypot(), degrees(), radians() by importing math module.

c. Write a program to demonstrate the working of built-in Logarithmic and Power functions exp(), log(), log2(), log10(), pow() by importing math module.

d. Write a program to demonstrate the working of built-in numeric functions ceil(), floor(), fabs(), factorial(), gcd() by importing math module.

10. CLASS AND OBJECTS

a. Write a program to create a BankAccount class. Your class should support the following methods for i) Deposit

- ii) Withdraw
- iii) GetBalanace
- iv) PinChange

b. Create a SavingsAccount class that behaves just like a BankAccount, but also has an interest rate and a method that increases the balance by the appropriate amount of interest (Hint:use Inheritance).

c. Write a program to create an employee class and store the employee name, id, age, and salary using the constructor. Display the employee details by invoking employee_info() method and also using dictionary (__dict__).

d. Access modifiers in Python are used to modify the default scope of variables. Write a program to demonstrate the 3 types of access modifiers: public, private and protected.

11. FILE HANDLING

- a. . Write a program to read a filename from the user, open the file (say firstFile.txt) and then perform the following operations:
 - i. Count the sentences in the file.
 - ii. Count the words in the file.

iii. Count the characters in the file.

b. . Create a new file (Hello.txt) and copy the text to other file called target.txt. The target.txt file should store only lower case alphabets and display the number of lines copied.

c. Write a Python program to store N student"s records containing name, roll number and branch. Print

MECHANICAL ENGINEERING

the given branch student"s details only.

References:

1. Rajib Mall, "Fundamentals of Software Engineering", 5th Edition, PHI, 2018.

Ramez Elmasri, Shamkant, B. Navathe, "Database Systems", Pearson Education, 6th Edition, 2013.
 Reema Thareja, "Python Programming - Using Problem Solving Approach", Oxford Press, 1st Edition, 2017.

4. Larry Lutz, "Python for Beginners: Step-By-Step Guide to Learning Python Programming", CreateSpace Independent Publishing Platform, First edition, 2018

Online Learning Resources/Virtual Labs:

1. http://vlabs.iitkgp.ernet.in/se/

2. http://vlabs.iitb.ac.in/vlabs-dev/labs/dblab/index.php

3. <u>https://python-iitk.vlabs.ac.in</u>

20A99201 (Common to All Branches of Engineering) 3 0 Pre-requisite NIL Semester III Set Course Objectives: • To make the students to get awareness on environment • To understand the importance of protecting natural resources, ecosystems for future and pollution causes due to the day to day activities of human life • To save earth from the inventions by the engineers. Course Outcomes (CO): • At the end of the course, the student will be able to • • Grasp multidisciplinary nature of environmental studies and various renewable and no resources. • Understand flow and bio geo, chemical cycles and ecological pyramide		0
 Course Objectives: To make the students to get awareness on environment To understand the importance of protecting natural resources, ecosystems for future and pollution causes due to the day to day activities of human life To save earth from the inventions by the engineers. Course Outcomes (CO): At the end of the course, the student will be able to Grasp multidisciplinary nature of environmental studies and various renewable and no resources. 	 n	
 To make the students to get awareness on environment To understand the importance of protecting natural resources, ecosystems for future and pollution causes due to the day to day activities of human life To save earth from the inventions by the engineers. Course Outcomes (CO): At the end of the course, the student will be able to Grasp multidisciplinary nature of environmental studies and various renewable and no resources.		
 To understand the importance of protecting natural resources, ecosystems for future and pollution causes due to the day to day activities of human life To save earth from the inventions by the engineers. Course Outcomes (CO): At the end of the course, the student will be able to Grasp multidisciplinary nature of environmental studies and various renewable and no resources.		
 To understand the importance of protecting natural resources, ecosystems for future and pollution causes due to the day to day activities of human life To save earth from the inventions by the engineers. Course Outcomes (CO): At the end of the course, the student will be able to Grasp multidisciplinary nature of environmental studies and various renewable and no resources.		
 At the end of the course, the student will be able to Grasp multidisciplinary nature of environmental studies and various renewable and no resources. 	enerat	atio
 At the end of the course, the student will be able to Grasp multidisciplinary nature of environmental studies and various renewable and no resources. 		
• Grasp multidisciplinary nature of environmental studies and various renewable and no resources.		
resources.	renew	wab
• Understand flow and his gas, chamical evalues and apploated pyramids		
 Understand flow and bio-geo- chemical cycles and ecological pyramids. 		
• Understand various causes of pollution and solid waste management and related	prever	entiv
measures.		
• About the rainwater harvesting, watershed management, ozone layer depletion and	/aste	lar
reclamation.		
• Casus of population explosion, value education and welfare programmes.		
UNIT - I	8 Hrs	rc
Multidisciplinary Nature Of Environmental Studies: – Definition, Scope and Importance		
Public Awareness.	11000	<i>J</i> u 1
Natural Resources : Renewable and non-renewable resources – Natural resources and problems – Forest resources – Use and over – exploitation, deforestation, case studies extraction – Mining, dams and other effects on forest and tribal people – Water resources – U utilization of surface and ground water – Floods drought conflicts over water dams – h	and u Igricul	5 ui
problems – Forest resources – Use and over – exploitation, deforestation, case studies extraction – Mining, dams and other effects on forest and tribal people – Water resources – U utilization of surface and ground water – Floods, drought, conflicts over water, dams – b problems – Mineral resources: Use and exploitation, environmental effects of extracting mineral resources, case studies – Food resources: World food problems, changes caused by and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, sa		ultu
problems – Forest resources – Use and over – exploitation, deforestation, case studies extraction – Mining, dams and other effects on forest and tribal people – Water resources – U utilization of surface and ground water – Floods, drought, conflicts over water, dams – b problems – Mineral resources: Use and exploitation, environmental effects of extracting mineral resources, case studies – Food resources: World food problems, changes caused by and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, sa studies. – Energy resources:	12 H	ultu , ca
problems – Forest resources – Use and over – exploitation, deforestation, case studies extraction – Mining, dams and other effects on forest and tribal people – Water resources – U utilization of surface and ground water – Floods, drought, conflicts over water, dams – b problems – Mineral resources: Use and exploitation, environmental effects of extracting mineral resources, case studies – Food resources: World food problems, changes caused by and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, sa studies. – Energy resources: UNIT - II Ecosystems: Concept of an ecosystem. – Structure and function of an ecosystem – Producers,	consur	ultu , cas H rs ume
broblems – Forest resources – Use and over – exploitation, deforestation, case studies extraction – Mining, dams and other effects on forest and tribal people – Water resources – U atilization of surface and ground water – Floods, drought, conflicts over water, dams – b problems – Mineral resources: Use and exploitation, environmental effects of extracting nineral resources, case studies – Food resources: World food problems, changes caused by and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, sa studies. – Energy resources: UNIT - II Ecosystems: Concept of an ecosystem. – Structure and function of an ecosystem – Producers, and decomposers – Energy flow in the ecosystem – Ecological succession – Food chains, foo	consur webs	ultu , cas H rs ume os ar
problems – Forest resources – Use and over – exploitation, deforestation, case studies extraction – Mining, dams and other effects on forest and tribal people – Water resources – U utilization of surface and ground water – Floods, drought, conflicts over water, dams – b problems – Mineral resources: Use and exploitation, environmental effects of extracting mineral resources, case studies – Food resources: World food problems, changes caused by and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, sa studies. – Energy resources: UNIT - II Ecosystems: Concept of an ecosystem. – Structure and function of an ecosystem – Producers, and decomposers – Energy flow in the ecosystem – Ecological succession – Food chains, foo ecological pyramids – Introduction, types, characteristic features, structure and function of th	consur webs	ultu , cas H rs ume os ar
broblems – Forest resources – Use and over – exploitation, deforestation, case studies extraction – Mining, dams and other effects on forest and tribal people – Water resources – U utilization of surface and ground water – Floods, drought, conflicts over water, dams – b problems – Mineral resources: Use and exploitation, environmental effects of extracting mineral resources, case studies – Food resources: World food problems, changes caused by and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, sa studies. – Energy resources: UNIT - II Ecosystems: Concept of an ecosystem. – Structure and function of an ecosystem – Producers, and decomposers – Energy flow in the ecosystem – Ecological succession – Food chains, foo ecological pyramids – Introduction, types, characteristic features, structure and function of the ecosystem:	consur webs	ultu , cas H rs ume os ar
problems – Forest resources – Use and over – exploitation, deforestation, case studies extraction – Mining, dams and other effects on forest and tribal people – Water resources – U utilization of surface and ground water – Floods, drought, conflicts over water, dams – b problems – Mineral resources: Use and exploitation, environmental effects of extracting nineral resources, case studies – Food resources: World food problems, changes caused by and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, sa UNIT - II Ecosystems: Concept of an ecosystem. – Structure and function of an ecosystem – Producers, and decomposers – Energy flow in the ecosystem – Ecological succession – Food chains, foo prological pyramids – Introduction, types, characteristic features, structure and function of the a. Forest ecosystem.	consur webs	ultu , cas H rs ume os ar
problems – Forest resources – Use and over – exploitation, deforestation, case studies extraction – Mining, dams and other effects on forest and tribal people – Water resources – U utilization of surface and ground water – Floods, drought, conflicts over water, dams – b problems – Mineral resources: Use and exploitation, environmental effects of extracting nineral resources, case studies – Food resources: World food problems, changes caused by and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, sa studies. – Energy resources: UNIT - II Ecosystems: Concept of an ecosystem. – Structure and function of an ecosystem – Producers, and decomposers – Energy flow in the ecosystem – Ecological succession – Food chains, foo ecological pyramids – Introduction, types, characteristic features, structure and function of the ecosystem: a. Forest ecosystem. b. Grassland ecosystem.	consur webs	ultu , cas H rs ume os ar
problems – Forest resources – Use and over – exploitation, deforestation, case studies extraction – Mining, dams and other effects on forest and tribal people – Water resources – U utilization of surface and ground water – Floods, drought, conflicts over water, dams – b problems – Mineral resources: Use and exploitation, environmental effects of extracting nineral resources, case studies – Food resources: World food problems, changes caused by and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, sa utilization. – Energy resources: utilizer - Energy resources: utilizer - Energy flow in the ecosystem – Ecological succession – Food chains, foo prological pyramids – Introduction, types, characteristic features, structure and function of the ecosystem: a.	consur webs	ultu , cas H rs ume os ar
problems – Forest resources – Use and over – exploitation, deforestation, case studies extraction – Mining, dams and other effects on forest and tribal people – Water resources – U utilization of surface and ground water – Floods, drought, conflicts over water, dams – b problems – Mineral resources: Use and exploitation, environmental effects of extracting mineral resources, case studies – Food resources: World food problems, changes caused by and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, sa studies. – Energy resources: UNIT - II Ecosystems: Concept of an ecosystem. – Structure and function of an ecosystem – Producers, and decomposers – Energy flow in the ecosystem – Ecological succession – Food chains, foo ecological pyramids – Introduction, types, characteristic features, structure and function of the ecosystem: a. Forest ecosystem. b. Grassland ecosystem c. Desert ecosystem	onsur webs follow diver ctive India achin	ultu , cas Hrs ume os ar owir ersi e us a as ng o

MECHANICAL ENGINEERING

Environmental Pollution: Definition, Cause, effects and control measures of :

- a. Air Pollution.
- b. Water pollution
- c. Soil pollution
- d. Marine pollution
- e. Noise pollution
- f. Thermal pollution
- g. Nuclear hazards

Solid Waste Management: Causes, effects and control measures of urban and industrial wastes – Role of an individual in prevention of pollution – Pollution case studies – Disaster management: floods, earthquake, cyclone and landslides.

UNIT - IV

10 Hrs

Social Issues and the Environment: From Unsustainable to Sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns. Case studies – Environmental ethics: Issues and possible solutions – Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Case Studies – Wasteland reclamation. – Consumerism and waste products. – Environment Protection Act. – Air (Prevention and Control of Pollution) Act. – Water (Prevention and control of Pollution) Act – Wildlife Protection Act – Forest Conservation Act – Issues involved in enforcement of environmental legislation – Public awareness.

UNIT - V

8 Hrs

Human Population And The Environment: Population growth, variation among nations. Population explosion – Family Welfare Programmes. – Environment and human health – Human Rights – Value Education – HIV/AIDS – Women and Child Welfare – Role of information Technology in Environment and human health – Case studies.

Field Work: Visit to a local area to document environmental assets River/forest grassland/hill/mountain – Visit to a local polluted site-Urban/Rural/Industrial/Agricultural Study of common plants, insects, and birds – river, hill slopes, etc..

Textbooks:

- 1. Text book of Environmental Studies for Undergraduate Courses Erach Bharucha for University Grants Commission, Universities Press.
- 2. Palaniswamy, "Environmental Studies", Pearson education
- 3. S.Azeem Unnisa, "Environmental Studies" Academic Publishing Company
- 4. K.Raghavan Nambiar, "Text book of Environmental Studies for Undergraduate Courses as per UGC model syllabus", Scitech Publications (India), Pvt. Ltd.

Reference Books:

- 1. Deeksha Dave and E.Sai Baba Reddy, "Textbook of Environmental Science", Cengage Publications.
- 2. M.Anji Reddy, "Text book of Environmental Sciences and Technology", BS Publication.
- 3. J.P.Sharma, Comprehensive Environmental studies, Laxmi publications.
- 4. J. Glynn Henry and Gary W. Heinke, "Environmental Sciences and Engineering", Prentice hall of India Private limited
- 5. G.R.Chatwal, "A Text Book of Environmental Studies" Himalaya Publishing House
- 6. Gilbert M. Masters and Wendell P. Ela, "Introduction to Environmental Engineering and Science, Prentice hall of India Private limited.

Course Code	Numerical Methods & Probability theory	L	T	P	C
20A54402	(Common to EEE, MECH)	3	0	0	3
Pre-requisite	Basic Equations and Basic Probability Semester		I	V	
Course Objectives:	moviding the student with the Imovilades on verious num		1	hodo	for
	providing the student with the knowledge on various num nterpolating the polynomials, evaluation of integral equation				
	s. The theory of Probability and random variables.	nis ai	iu so	iutio	1 01
Course Outcomes (CO): Student will be able to				
	rical methods to solve algebraic and transcendental equations				
	polating polynomials using interpolation formulae				
	ential and integral equations numerically				
	bility theory to find the chances of happening of events.				
• Understand	various probability distributions and calculate their statistical	const	ants.		
UNIT - I	Solution of Algebraic & Transcendental Equations:	8 H			
	on method-Iterative method-Regula falsi method-Newton Rap	hson	meth	od	
System of Algebraic	equations: Gauss Jordan method-Gauss Siedal method.				
UNIT - II	Interpolation	8 H			
	ewton's forward and backward interpolation formulae - Lag	grang	e's f	formu	ılae.
Gauss forward and b	ackward formula, Stirling's formula, Bessel's formula.				
UNIT - III	Numerical Integration & Solution of Initial value problems to Ordinary differential equations	9 H	rs		
Numerical Integratio	n: Trapezoidal rule – Simpson's 1/3 Rule – Simpson's 3/8 R	ule			
Numerical solution of	of Ordinary Differential equations: Solution by Taylor's series kimations-Modified Euler's Method-Runge-Kutta Methods.	es-Pio	card's	s Me	hod
UNIT - IV	Probability theory:	9 H	rs		
Probability, probabi	lity axioms, addition law and multiplicative law of prob	abilit	y, co	nditi	onal
probability, Baye's	theorem, random variables (discrete and continuous), j , mathematical expectation.				
UNIT - V	Random variables & Distributions:	9 H	rs		
Probability distributi	on - Binomial, Poisson approximation to the binomial distr			d noi	mal
distribution-their pro	perties-Uniform distribution-exponential distribution				
Textbooks:					
	gineering Mathematics, B.S.Grewal, Khanna publishers.				
	y and Statistics for Engineers and Scientists, Ronald E. Walpo	ole,PN	VIE.		
	ngineering Mathematics, by Erwin Kreyszig, Wiley India.				
Reference Books:		1			
	gineering Mathematics, by B.V.Ramana, Mc Graw Hill publi Engineering Mathematics, by Alan Jeffrey, Elsevier.	sners	•		
Online Learning Res					
	ecourses.nptel.ac.in/noc17_ma14/preview				
	burses/117101056/17				
3. http://nptel.a	c.in/courses/111105090				

Course Code	Applied Thermodynamics L T P C							
20A03401T			3	0	0	3		
Pre-requisite	NIL	Semester		Γ				
Course Objectives: To introduce students to the Working Principles of IC engines.								
	nbustion process in SI and CI engines							
	nowledge on different types of compr ze concepts of thermodynamic cycles		n mlanta a	nd aa	a tumb	inco		
	nowledge on the working of nozzles,							
	lowledge on the working of hozzles,	lurbines, remgeratio	II and an	conu	monn	ig.		
Course Outcomes (CO):							
After completion	eting this course, the students can							
Understand	the working of IC engines with comb	ustion process. (L1)						
 Select comprise 	ressors for different applications. (L2)						
 Use T-s diag 	ram in vapour power and gas power	cycles. (L3)						
Evaluate the	relative performance of different stea	am turbines (L6)						
Select appro	priate refrigerant for different applica	tions. (L6)						
		•			10.11			
UNIT - I	IC Eng		- 4 1		10 H			
	ication of IC engines, comparison of	two stroke and four	stroke er	igines	, com	parison		
of SI and CI Engines		tasting IC Engines	narfarma		n a 1	a of IC		
Engines.	mance of IC Engines: Methods of	testing IC Engines,	periorina	nce a	narys	IS OF IC		
	C Engines: SI engine: stages of	combustion norm	al com	nuctio	n al	normal		
	es effecting ignition lag, Flame pro							
	combustion, abnormal combustion, v							
UNIT - II	Air comp		iuy perio		8 Hr			
	pressor: Single stage reciprocating		equired					
	umetric efficiency, multi stage com							
compressors, compre		presson, encer or n		g	11101	ii stuge		
	r: Working principle of a rolling pi	ston type compress	or (fixed	vane	tvpe). multi		
	ors, characteristics of rotary vane typ							
and axial flow comp		1 /		I		0		
UNIT - III	Vapour & Gas	Power Cycles			8 Hr	s		
Vapour power cycle	e, simple Rankine cycle, mean ten		, thermo	dynan	nic v	ariables		
	Rankine cycle - reheating and regene			•				
	plant, Brayton cycle, closed cycle a		gas turbi	nes, d	condi	tion for		
	itio, actual cycle. Methods to impro-							
reheating.						-		
UNIT - IV	Nozzles & Stea				8 Hr			
	as and steam nozzles. Compressible	flow through nozzl	le- condi	tion f	or m	aximum		
	fficiency - Super saturation.							
	npulse turbine and reaction turbine			turbin	es -	velocity		
	and reaction turbines, blade efficienc		l.					
UNIT - V	Refrigeration & A				8 H			
	-Coleman cycle - vapour compressio	on cycle, sub cooling	g and sup	per he	eating	-vapour		
	operties of common refrigerants.	1						
	rometry and Air Conditioning: Ps	ychometric propertie	es, psych	ometr	nc pr	ocesses,		
summer and winter air conditioning systems.								
Textbooks:								
	Sincering Mahash V Dathana Tata M	LC 11:11 2017						

- 1. Thermal Engineering, Mahesh V Rathore, Tata McGraw Hill 2017
- 2. M.L.Mathur and F.S.Mehta, Thermal Engineering, Jain brothers, 2014

MECHANICAL ENGINEERING

Reference Books:

- 1. Ganesan V, Internal Combustion Engines, Tata McGraw Hill, 2017.
- 2. Yahya, S. M., Turbines, Compressors and Fans, 4/e, Tata McGraw Hill, 2010.
- 3. Nag P.K, Engineering Thermodynamics, 4/e, Tata McGraw-Hill, 2008.
- 4. Onkar Singh, Thermal Turbomachines, 3/e, Wiley India, 2014.
- 5. Refrigeration and Air Conditioning, C.P.Arora

Online Learning Resources:

- 1. <u>https://nptel.ac.in/courses/112/103/112103307/</u>
- 2. https://nptel.ac.in/courses/112/103/112103275/

Course Code	KINETICS OF MACH	IINERY	L T P C					
20A03402			3					
Pre-requisite	NIL	Semester		Ι	V			
Course Objectives:								
The Objectives of this course are to:								
	foundation for the study of Dynamic	cs of Machinery and	machin	e desig	n.			
 Comprehend 	the fundamentals of kinematics	and to understand	the co	ncept	of ma	achines,		
	and related terminologies.							
 Analyze a m 	echanism for displacement, velocity	and acceleration at a	ny poin	t in a n	noving	g link.		
	skills for designing and analyzing lind							
	ne concept of synthesis and analysis of							
	nd the Principles and working of varia		on mec	hanism	ıs.			
	Steering gear mechanisms and workir							
	nd the theory of gears, gear trains and	l cams.						
Course Outcomes (CO):							
• Build up cr	itical thinking and problem-solving	a canacity of variou	is mee	hanical	engi	neering		
nrohlems rel	ated to kinematics of machines (L4)	5 cupucity of variou	as mee	inunical		meening		
	the basic principles of mechanisms in	n mechanical enginee	ring (L	1)				
	bus concepts of mechanisms like st				Steeri	ng gear		
	and working principles of power e							
	lems effectively (L6)			,	,	0		
	velocity and acceleration diagram for	or a given mechanism	n (L3)					
	ytical, mathematical and graphical a			chines	for e	ffective		
design (L3)								
Construct the	e cam profile for a given motion (L3))						
 Analyze vari 	ious gear trains (L4)							
UNIT - I	MECHANISMS	AND MACHINES			8	Hrs		
	- Classification - Rigid Link, flexi		Types c	of kiner	matic	pairs –		
	ing, screw and spherical pairs – lov							
constrained motion	- completely, partially or successful	ully constrained and	incom	pletely	cons	trained.		
Mechanisms and ma	chines - classification of mechanism	s and machines - kir	ematic	chain -	– inve	rsion of		
mechanisms - inver	rsions of quadric cycle chain, sing	le and double slider	r crank	chain.	Mot	oility of		
mechanisms.								
UNIT - II	Steering & Straight-Li					Hrs		
	on Mechanisms- Exact and approxi				– Pear	ucellier,		
	Brasshopper, Watt, Tchebicheff and R							
	ns: Conditions for correct steering –							
Hooke's Joint (Unive	ersal coupling) -Single and double He	ooke's joint — appli	cations	– Simp	ole pro	oblems.		
	ZINE				14) 11		
UNIT - III Valacity and Acco		ATICS	ion of	limlr i) Hrs		
	leration Diagrams- Velocity and locity and acceleration – Graphical n							
	chanism, four bar mechanism. Ac							
determination of Coriolis component of acceleration, Klein's construction: Analysis of slider crank								
mechanism for displacement, velocity and acceleration of slider using analytical method. Instantaneous Centre Method: Instantaneous centre of rotation, centrode and axode – relative motion								
	s – Three centers in-line theorem							
	ermination of angular velocity of point			cantol	5 101	Simple		
UNIT - IV		CAR TRAINS			10) Hrs		
	irs, toothed gears – types – law of ge		consta	nt velo				
	on, Forms of tooth- cycloidal and inv							
	ethods to avoid interference - Conditional and the							
	d path of contact. Introduction to Heli				· 1			

MECHANICAL ENGINEERING

GEAR TRAINS:

Introduction –Types of gears – Simple, Compound, Reverted and Epicyclic gear trains, Train value – Methods of finding train value or velocity ratio – Tabular column method for Epicyclic gear trains. Torque in epicyclic gear trains. Differential gear of an automobile – Simple problems.

UNIT - VCAMS & Followers8 HrsCAMS: Definitions of cam and follower – uses – Types of followers and cams – Terminology. Types of
follower motion - Uniform velocity, Simple harmonic motion, Cycloidal, uniform acceleration and
retardation, Maximum velocity and maximum acceleration during outward and return strokes. Drawing
of cam profiles.

ANALÝSIS OF MOTION OF FOLLOWERS: Tangent cam with roller follower – circular arc (Convex) cam with flat faced and roller follower

Textbooks:

- 1. Theory of Machines and Mechanisms-S.S.Rattan, Tata McGraw Hill Publishers.
- 2. Theory of Machines R.S Khurmi& J.K Gupta, S Chand Publishers.

Reference Books:

- 1. Theory of Machines by Thomas Bevan/ CBS
- 2. Theory of Machines / R.K Bansal
- 3. Theory of Machines Sadhu Singh PearsonsEdn
- 4. Mechanism and Machine Theory / JS Rao and RV Dukkipati / New Age
- 5. The theory of Machines /Shiegley/ Oxford.
- 6. Theory of machines PL. Balaney/khanna publishers

Online Learning Resources:

- 1. https://www.digimat.in/nptel/courses/video/112104121/L01.html
- 2. https://nptel.ac.in/courses/112/105/112105268/

Course Code	Manufacturing Techr	nology	L	T	P	C		
20A03403T	NII	G (3	0	0	3		
Pre-requisite	NIL	Semester]	IV			
Course Objectives:								
• To introduce the parameters in the metal cutting operation.								
• To relate tool wear and tool life and the variables that control them.								
 To calculate machining times for different machining processes. 								
• To impart knowledge on various metal cutting processes. (Lathe, drilling, boring shaping,								
	ling and grinding).	· · · · C · 1 · · · · · · · · · · · · ·		. 1. 1	1			
• To teach the	principles of jigs and fixtures and typ	bes of clamping and	work no	Jung	devic	es.		
Course Outcomes (CO):							
	urse, the student will be able to							
Choose cutti	ng processes and variables. (L3)							
	vear and tool life. (L1)							
	e machining parameters for different i		. (L5)					
	hods to generate different types of sur	rfaces. (L3)						
	k-holding requirements. (L2) and fixtures. (L6)							
• Design jigs a	ind fixtures. (L0)							
UNIT - I	Material Rem	oval Processes			8	Hrs		
	L							
	gle and multi-point cutting tools, or							
	tion, tool wear and tool life, surface f	finish and integrity, 1	machina	ability	, cutti	ng tools		
and materials, cutting					1	<u></u>		
UNIT - II		lling Machines	6.1.41			2 Hrs		
	Operations: Principles of working, space turning, thread turning attachm							
	athes - Principle of working -	icitis for fames. Ma	CIIIIII	; unic	calci	nations.		
	Principles of working, specifications,	types, and operation	is perfo	ormed	- tool	holding		
	are of twist drill, Machining time calc		T T			0		
UNIT - III	Boring, Reami	ing and Taping			8	Hrs		
	Principles of working, specifications,		ns perfo	ormed	- tool	holding		
	are of boring tools, Machining time ca		•			U		
	ners: Principles of working, specificat		rations	perfor	med –	- tool		
	menclature of reamers. Machining tin							
	Principles of working, specifications,	types, and operation	is perfo	rmed	- tool	holding		
devices - nomenclatu	ire of taps.							
UNIT - IV	Milling, Shaping and	Abrasive Machinii	ng		1	0 Hrs		
	and Milling machines - Principles			s, clas				
	achining operations, types and geome							
	g machines, machining time calculation					-		
Shaping, Slotting and planing machines - Principles of working - principal parts, specification,						fication,		
	ions performed, machining time calcu		c	• •		1.		
	g: Grinding and grinding machines:		ypes of	grindi	ing m	achines,		
UNIT - V	ameters, honing, lapping, other finish Jigs and				Q	Hrs		
	of Jigs and fixtures and uses, 3-2-1 p		nd clan	nning				
	pes of clamping and work holding de							
	r orangeng and work horanig a			-0° un				
Textbooks:								

MECHANICAL ENGINEERING

- 1. P.N. Rao, Manufacturing Technology: Metal Cutting and Machine Tools, (Volume 2), 3/e, Tata McGraw-Hill Education, 2013
- 2. R.K. Jain and S.C. Gupta, Production Technology, 17/e, Khanna Publishers, 2012.

Reference Books:

- 1. Kalpakzian S and Schmid SR, Manufacturing Engineering and Technology, 7/e, Pearson, 2018.
- 2. Milton C.Shaw, Metal Cutting Principles, 2/e, Oxford, 2012
- 3. Hindustan Machine Tools, Production Technology, TMH, 2001
- 4. V.K.Jain, Advanced Machining Process, 12/e, Allied Publications, 2010
- 5. AB. Chattopadhyay, Machining and Machine Tools, 2/e, Wiley, 2017
- 6. Halmi A Yousuf & Hassan, , Machine Technology: Machine Tools and Operations, CRC Press Taylor and Francis Group, 2008

Online Learning Resources:

- 1. https://www.digimat.in/nptel/courses/video/112107239/L01.html
- 2. https://nptel.ac.in/courses/112/104/112104304/

Course Code	MANAGERIAL ECONOMICS AND FINANCIAL	L	Т	Р	С			
20A52301					3			
	(Common to All branches of Engineering)							
Pre-requisite	NIL Semester		I	Ι				
Course Objectives: To inculcate the basic knowledge of micro economics and financial accounting								
 To inculcate the basic knowledge of micro economics and financial accounting To make the students learn how demand is estimated for different products, input-output 								
	ip for optimizing production and cost	Jucis	, mp	ut-ou	ւրու			
	the Various types of market structure and pricing methods and st	trateg	V					
• To give an overview on investment appraisal methods to promote the students to learn how								
	ng-term investment decisions.							
To provid	de fundamental skills on accounting and to explain the pro	cess	of p	orepa	ring			
financial s	statements							
Course Outcome								
	e concepts related to Managerial Economics, financial accounting							
	nd the fundamentals of Economics viz., Demand, Production,	cost	, reve	enue	and			
markets								
	Concept of Production cost and revenues for effective Business	dec1s	1011					
	now to invest their capital and maximize returns							
	the capital budgeting techniques	ofh	nina		tity,			
• Develop t	he accounting statements and evaluate the financial performance	OI DI	ismes	ss em	.ny.			
UNIT - I	Managerial Economics							
Law of Demand	ture, meaning, significance, functions, and advantages. Demand- - Demand Elasticity- Types – Measurement. Demand For easting, Methods. Managerial Economics and Financial	orecas	sting-	Fac	tors			
UNIT - II	Production and Cost Analysis							
cost combination- Cobb-Douglas Pro Cost & Break-Ev Determination of	Introduction – Nature, meaning, significance, functions and advantages. Production Function– Least- cost combination– Short run and Long run Production Function- Isoquants and Isocosts, MRTS - Cobb-Douglas Production Function - Laws of Returns - Internal and External Economies of scale. Cost & Break-Even Analysis - Cost concepts and Cost behavior- Break-Even Analysis (BEA) - Determination of Break-Even Point (Simple Problems)-Managerial significance and limitations of Break-Even Analysis.							
UNIT - III	Business Organizations and Markets							
Introduction – N Organizations- Sc	Vature, meaning, significance, functions and advantages. For the Proprietary - Partnership - Joint Stock Companies - Public - Perfect and Imperfect Competition - Features of Perfect Comp	Secto	r En	terpri	ises.			
Monopolistic Competition-Oligopoly-Price-Output Determination - Pricing Methods and Strategies								
UNIT - IV	Capital Budgeting							
Introduction – Nature, meaning, significance, functions and advantages. Types of Working Capital, Components, Sources of Short-term and Long-term Capital, Estimating Working capital requirements. Capital Budgeting– Features, Proposals, Methods and Evaluation. Projects – Pay Back								
Method, Accounting Rate of Return (ARR) Net Present Value (NPV) Internal Rate Return (IRR) Method (sample problems)								

Method (Bumple)	side terms)
UNIT - V	Financial Accounting and Analysis

MECHANICAL ENGINEERING

Introduction – Nature, meaning, significance, functions and advantages. Concepts and Conventions-Double-Entry Book Keeping, Journal, Ledger, Trial Balance- Final Accounts (Trading Account, Profit and Loss Account and Balance Sheet with simple adjustments). *Financial Analysis* - Analysis and Interpretation of Liquidity Ratios, Activity Ratios, and Capital structure Ratios and Profitability.

Textbooks:

- 1. Varshney&Maheswari: Managerial Economics, Sultan Chand, 2013.
- 2. Aryasri: Business Economics and Financial Analysis, 4/e, MGH, 2019

Reference Books:

- 1. Ahuja Hl Managerial economics Schand, 3/e, 2013
- 2. S.A. Siddiqui and A.S. Siddiqui: Managerial Economics and Financial Analysis, New Age International, 2013.
- 3. Joseph G. Nellis and David Parker: Principles of Business Economics, Pearson, 2/e, New Delhi.
- 4. Domnick Salvatore: Managerial Economics in a Global Economy, Cengage, 2013.

Online Learning Resources:

https://www.slideshare.net/123ps/managerial-economics-ppt https://www.slideshare.net/rossanz/production-and-cost-45827016 https://www.slideshare.net/darkyla/business-organizations-19917607 https://www.slideshare.net/balarajbl/market-and-classification-of-market https://www.slideshare.net/ruchi101/capital-budgeting-ppt-59565396 https://www.slideshare.net/ashu1983/financial-accounting

Course Code	ORGANISATIONAL BEHAV	/IOUR	L	Т	Р	С
20A52302	20A52302 (Common to All branches of Engineering)			0	0	3
Pre-requisite	NIL	Semester		I	Π	
		•				
Course Objectives:						
To enable stu	ident's comprehension of organizational be	havior				
 To offer know 	wledge to students on self-motivation, leade	ership and manage	ment			
To facilitate	them to become powerful leaders					
	owledge about group dynamics					
	n understand the importance of change and	development				
Course Outcomes (C						
	rganizational Behaviour, its nature and scop					
	he nature and concept of Organizational bel					
	es of motivation to analyse the performance	e problems				
	lifferent theories of leadership					
Evaluate grou						
· · ·	owerful leader					
UNIT - I	Introduction to Organizational Behavio					
	nature, scope and functions - Organizing Pr			zing	effect	ive
-Understanding Indiv	ridual Behaviour – Attitude - Perception - L	earning – Persona	lity.			
UNIT - II	Motivation and Leading) T F (T 1		X 7	
	on-Maslow's Hierarchy of Needs - Hertzb					
	- Mc Cleland's theory of needs-Mc Greg		theor	у ү-	- Ada	ms
	e's goal setting theory– Alderfer's ERG the	cory.				
UNIT - III	Organizational Culture		· 1	1.		•,
	ing, scope, definition, Nature - Organizat					
	Grid - Transactional Vs Transformational L		nes o	r goo	a Lea	ader
UNIT - IV	nt -Evaluating Leader- Women and Corpor	rate leadership.				
	Group Dynamics	Determinent	f.		1 - 1	
	ng, scope, definition, Nature- Types of group					
	oup Development - Group norms - Group of			roups	3 - GI	oup
UNIT - V	am building - Conflict in the organization– Organizational Change and Developme		n			
	, Meaning, scope, definition and functions		~1+	ro (Thone	ring
	ge Management – Work Stress Managem					
	ons of organization's change and developm		nai n	Tanag	;emei	n –
Textbooks:	sis of organization's change and developin	on				
	anisational Behaviour, McGraw-Hill, 12 T	h edition 2011				
	anisational Behaviour, Himalya Publishing					
		110030 2017				
Reference Books:						
	ganizational Behaviour, TMH 2009					
	inisational Behaviour, Thomson, 2009.	Debasiana Deane		0		
	Stephen, Timothy A. Judge, Organisational		on 200	J9.		
Online Learning Re	Organisational Behaviour, Himalaya, 2009	,				
		ro				
	eshare.net/Knight1040/organizational-cultureshare.net/AbhayRajpoot3/motivation-165					
https://www.slideshare.net/harshrastogi1/group-dynamics-159412405 https://www.slideshare.net/vanyasingla1/organizational-change-development-26565951						

	MECHANICAL ENGIN	NEERING				
Course Code	Business Environment		L	Т	Р	С
20A52303	(Common to All branches of Eng	0	3	0	0	3
Pre-requisite	NIL	Semester		IJ	I	
Course Objectives						
• To make the	student to understand about the business en	vironment				
	em in knowing the importance of fiscal and					
	them in understanding the export policy of t					
	nowledge about the functioning and role of V					
	ge the student in knowing the structure of sto					
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~~`					
Course Outcomes (
	ness Environment and its Importance. various types of business environment.					
	nowledge of Money markets in future invest	ment				
	a's Trade Policy	litent				
	al and monitory policy					
	ersonal synthesis and approach for identifyir	ng business opport	unitie	es		
UNIT - I	Overview of Business Environment			r	Turka	
	ning Nature, Scope, significance, function and Macro. Competitive structure of i					
	ions of environmental analysis& Characteri		JIIIICI	Ital	anary	/818-
advantages & mintat	ions of environmental analysiste enalacteri	sties of busiliess.				
UNIT - II	Fiscal & Monetary Policy					
Introduction - Natur	re, meaning, significance, functions and ac	lvantages. Public	Reve	nues	- Pu	ıblic
	ation of recent fiscal policy of GOI. High					
	of Money RBI -Objectives of monetary ar	nd credit policy - I	Recen	t trer	nds- I	Role
of Finance Commiss	10n.					
UNIT - III	India's Trade Policy					
	e, meaning, significance, functions and adv	antages. Magnitu	de an	d dir	ectio	n of
Indian International	Trade - Bilateral and Multilateral Trade Ag	greements - EXIM	[poli	cy an	d rol	e of
	e of Payments- Structure & Major compo	nents - Causes for	Dise	equili	ibriur	n in
Balance of Payments	s - Correction measures.					
UNIT - IV	Would Trade Organization					
	World Trade Organization e, significance, functions and advantages. C	rganization and S	tructi	110	Pole	and
functions of WTO in	n promoting world trade - GATT -Agreem	ents in the Urugu	av Ro	une -	TR	IPS
	ettlement Mechanism - Dumping and Anti-			Juna		
1		1 8				
UNIT - V	Money Markets and Capital Markets					
	e, meaning, significance, functions and adv					
	ems - Objectives, features and structure of					
	development – SEBI – Stock Exchanges - I	investor protection	1 and	role	of SI	±ВІ,
Introduction to interr						
Textbooks:						
	m (2009), International Business: Text and C	Cases, Prentice Ha	ll of]	India		
	Essentials of Business Environment: Texts and					ed
Edition.HPH2016						
Reference Books:						

MECHANICAL ENGINEERING

1.K. V. Sivayya, V. B. M Das (2009), Indian Industrial Economy, Sultan Chand Publishers, New Delhi, India.

2. Sundaram, Black (2009), International Business Environment Text and Cases, Prentice Hall of India, New Delhi, India.

3. Chari. S. N (2009), International Business, Wiley India.

4.E. Bhattacharya (2009), International Business, Excel Publications, New Delhi.

Online Learning Resources:

https://www.slideshare.net/ShompaDhali/business-environment-53111245 https://www.slideshare.net/rbalsells/fiscal-policy-ppt https://www.slideshare.net/aguness/monetary-policy-presentationppt https://www.slideshare.net/DaudRizwan/monetary-policy-of-india-69561982 https://www.slideshare.net/ShikhaGupta31/indias-trade-policyppt https://www.slideshare.net/viking2690/wto-ppt-60260883 https://www.slideshare.net/prateeknepal3/ppt-mo

MECHANICAL ENGINEERING

Course Code	Applied Thermodyna	nics Lab	L T P C				
20A03401P			0 0 3 1.5				
Pre-requisite	NIL	Semester	IV				
Course Objectives:							
	e functioning and performance of I	C. Engines					
• To find heat le	osses in various engines						
Course Outcomes (C	(0):						
Upon the successful c	ompletion of course, students will b	e able to					
	rent working cycles of engine						
	ous types of combustion chambers i						
	working of refrigeration and air con-	ditioning systems					
 Evaluate heat 	balance sheet of IC engine.						
•							
LIST OF EXPERIM	IENTS						
Demonstration of die	sel and petrol engines by cut model	S					
	diagram of 4-stroke diesel engine						
	agram of 2-stroke petrol engine						
3. Performance	of 2-stroke single cylinder petrol en	gine					
	multi cylinder petrol engine						
	of 4-stroke single cylinder diesel en						
	l disassembly of diesel and petrol er	ngines					
7. Exhaust gas a							
	of two stage reciprocating air comp	ressor					
	n of nozzle characteristics						
	of Refrigeration system						
11. Performance	of Air conditioning system						

12. Performance of heat pump

MECHANICAL ENGINEERING

Course Code	Manufacturing T	echnology Lab	L	Т	P	С		
20A03403P				0 0 3 1.				
Pre-requisite	NIL	Semester		IV				
Course Objectiv	es:	L	I					
Familiari	ze the construction and working o	of various machine tools.						
• Teach se	lection of parameters for different	machining processes.						
Course Outcom	es (CO):							
After completion	of this course the student may be	able to						
• Impleme	nt the concept of machining with	various machine tools.(L5	5)					
Get hand	s on experience on various machin	ne tools and machining of	perations.	(L5)				
	-							
List of Experime	ents:							
	ration of operations on general		he, drillir	ng, mi	lling,	shaper		
slotting,	cylindrical and surface grinding m	nachines.						
2. Step turn	ing and knurling on lathe machine	e						
	ning and knurling on lathe machin							
4. Thread c	utting (left hand or right hand) on	lathe machine.						
5. Drilling a	and Boring operations.							
6. Reaming	and tapping operations.							
7. Milling (Gear cutting) by using simple and	l Compound indexing.						
	Groove cutting on milling machin							
9. Shaping	and planning operations							
10. Slotting of	operations							
11. Cylindric	al and surface grinding operations	s						
•	of single point cutting tool							

12. Grinding of single point cutting tool

MECHANICAL ENGINEERING

Course Code	Computer Aided Ma	achine Drawing	L	Т	P	С
20A03404	•	0	0	0 0 3 IV ents. components. es. olts and nuts, bol		1.5
Pre-requisite	NIL	Semester		I	V	
Course Objectives:						
Introduce con	nventional representations of m	naterial and machine com	ponents.			
• Train to use s	software for 2D and 3D modeli	ing.	_			
• Familiarize w	vith thread profiles, riveted, we	elded and key joints.				
 Teach solid n 	nodeling of machine parts and	their sections.				
	tion of 2D and 3D assembly dra					
• Familiarize w	with limits, fits and tolerances is	n mating components				
Course Outcomes (C						
	his lab student will be able to					
	the conventional representation		ine comp	onents	5.	
	d, welded and key joints using					
	models and sectional views of					
	d models of machine parts and	assemble them.				
	assemblies into 2D drawings.					
• Create manuf	facturing drawing with dimensi	ional and geometric tolera	ances.			
The following conten	nts are to be done by any 2D	software package				
	sentation of materials and co					
	Drawing of thread profiles, hex		d bolts ar	id nut	s, bolt	ed join
	nut, stud joint, screw joint and					
	wing of rivet, lap joint, butt jo	oint with single strap, si	ngle rive	ted, d	ouble	rivete
double strap joints.						

Welded joints: Lap joint and T joint with fillet, butt joint with conventions.

Keys: Taper key, sunk taper key, round key, saddle key, feather key, woodruff key.

Couplings: rigid – Muff, flange; flexible – bushed pin-type flange coupling, universal coupling, Oldhams' coupling.

The following contents to be done by any 3D software package

Sectional views

Creating solid models of complex machine parts and create sectional views.

Assembly drawings: (Any four of the following using solid model software)

Lathe tool post, tool head of shaping machine, tail stock, machine vice, gate valve, carburettor, piston, connecting rod, eccentric, screw jack, plumber block, axle bearing, pipe vice, clamping device, Geneva cam, universal coupling,

Manufacturing drawing:

Representation of limits, fits and tolerances for mating parts. Use any four parts of above assembly drawings and prepare manufacturing drawing with dimensional and geometric tolerances.

Textbooks:

- 1. K.L.Narayana, P.Kannaiah and K.Venkat Reddy, Production Drawing, New Age International Publishers, 3/e, 2014
- 2. Software tools/packages- Auto CAD, Solid works or equivalent.

MECHANICAL ENGINEERING

Reference Books:

.

- 3. Cecil Jensen, Jay Helsel and Donald D.Voisinet, Computer Aided Engineering Drawing, Tata Mcgraw-Hill, NY, 2000.
- 4. James Barclay, Brain Griffiths, Engineering Drawing for Manufacture, Kogan Page Science, 2003.
- 5. N.D.Bhatt, Machine Drawing, Charotar, 50/e, 2014.

Online Learning Resources:

https://eeedocs.files.wordpress.com/2014/02/machinedrawing.pdf

Course Code		Soft Skills	L	T	P	C			
20A52401	NUT	Q (1	0	2	2			
Pre-requisite	NIL	Semester		IV					
Course Objectives:	Course Objectives:								
	ind development	of the students by focusing on s	oft skills						
 To encourage all round development of the students by focusing on soft skills To make the students aware of critical thinking and problem-solving skills 									
 To make the students aware of critical tilliking and problem-solving skins To develop leadership skills and organizational skills through group activities 									
 To function effectively with heterogeneous teams 									
Course Outcomes (CO):									
By the end of the program st	udents should be	able to							
		ve communicative skills							
• Interpret people at th	e emotional level	l through emotional intelligence	;						
apply critical thinkin	g skills in proble	m solving							
• analyse the needs of									
		decisions as a leader							
Develop social and v	work-life skills as	well as personal and emotional	well-bei	ng					
UNIT – I		t Skills & Communication Ski				Hrs			
		ills – definition, significance, t		ommuni	cation	skills -			
Intrapersonal & Inter-person	al skills - Verbal	and Non-verbal Communication	1						
Activities:									
	tion about calf a	trangths and weaknesses clarit	u of thou	aht co	lf ovn	racion			
– articulating with felicity	tion about sen- s	trengths and weaknesses- clarit	y or mou	gin – se	n-exp	ression			
	e narticinants he	fore the activity citing exampl	es from t	he lives	of the	oreat			
anecdotes and literary source		note the activity enting example		Inc nives	of the	, great,			
		Debate – Team Tasks - Book a	and film	Reviews	s hv or	rouns -			
		ersial and secular) on contempor							
		ns- Extempore- brief addresse							
negotiating- agreeing and dis						0			
		ting – Mock interviews – pres	entations	with an	n objec	tive to			
identify non- verbal clues an					5				
UNIT – II		Critical Thinking				Hrs			
	tion – Curiosity	 Introspection – Analytical T 	hinking -	- Open-1	minded	lness –			
Creative Thinking									
Activities:				• .•					
		bic - sequencing – assorting – i							
		- seeking viable solution – judg	ing with	rationale	e – eva	luating			
the views of others - Case St					10 1	IIma			
UNIT – III Maaning & faaturaa of Brohl		blem Solving & Decision Mak maging Conflict – Conflict reso			10	Hrs			
		sion making in teams – Methods		,					
	- Enective decis	non making in teams – wiethous	a styles	,					
Activities:									
Placing a problem which involves conflict of interests, choice and views – formulating the problem –						blem –			
	exploring solutions by proper reasoning – Discussion on important professional, career and organizational								
	decisions and initiate debate on the appropriateness of the decision.								
Case Study & Group Discuss	· · ·								
UNIT – IV		lligence & Stress Managemen	t		10 Hrs	s			

MECHANICAL ENGINEERING

Managing Emotions – Thinking before Reacting – Empathy for Others – Self-awareness – Self-Regulation – Stress factors – Controlling Stress – Tips

Activities:

Providing situations for the participants to express emotions such as happiness, enthusiasm, gratitude, sympathy, and confidence, compassion in the form of written or oral presentations.

Providing opportunities for the participants to narrate certain crisis and stress –ridden situations caused by failure, anger, jealousy, resentment and frustration in the form of written and oral presentation, Organizing Debates

$\mathbf{UNIT} - \mathbf{V}$	Leadership Skills	10 Hrs	
Team-Building – Decision-I	Making – Accountability – Planning – Public Speaking – Moti	vation – Risk-	
Taking - Team Building - Ti	me Management		

Activities:

Forming group with a consensus among the participants- choosing a leader- encouraging the group members to express views on leadership- democratic attitude- sense of sacrifice – sense of adjustment – vision – accommodating nature- eliciting views on successes and failures of leadership using the past knowledge and experience of the participants, Public Speaking, Activities on Time Management, Motivation, Decision Making, Group discussion etc.

NOTE-:

1. The facilitator can guide the participants before the activity citing examples from the lives of the great, anecdotes, epics, scriptures, autobiographies and literary sources which bear true relevance to the prescribed skill.

2. Case studies may be given wherever feasible for example for Decision Making- The decision of King Lear or for good Leadership – Mahendar Singh Dhoni etc.

Textbooks:

- 1. Personality Development and Soft Skills (English, Paperback, Mitra Barun K.) Publisher: Oxford University Press; Pap/Cdr edition (July 22, 2012)
- Personality Development and Soft Skills: Preparing for Tomorrow, <u>Dr Shikha Kapoor</u> Publisher : I K International Publishing House; 0 edition (February 28, 2018)

Reference Books:

- **1.** Soft skills: personality development for life success by Prashant Sharma, BPB publications 2018.
- 2. Soft Skills By Alex K. Published by S.Chand
- **3.** Soft Skills: An Integrated Approach to Maximise Personality Gajendra Singh Chauhan, Sangeetha Sharma Published by Wiley.
- 4. Communication Skills and Soft Skills (Hardcover, A. Sharma) Publisher: Yking books
- 5. SOFT SKILLS for a BIG IMPACT (English, Paperback, Renu Shorey) Publisher: Notion Press
- 6. Life Skills Paperback English Dr. Rajiv Kumar Jain, Dr. Usha Jain Publisher: Vayu Education of India

Online Learning Resources:

- 1. <u>https://youtu.be/DUIsNJtg2L8?list=PLLy_2iUCG87CQhELCytvXh0E_y-bOO1_q</u>
- 2. https://youtu.be/xBaLgJZ0t6A?list=PLzf4HHlsQFwJZel_j2PUy0pwjVUgj7KlJ
- 3. https://youtu.be/-Y-R9hD17lU
- 4. https://youtu.be/gkLsn4ddmTs
- 5. https://youtu.be/2bf9K2rRWwo
- 6. <u>https://youtu.be/FchfE3c2jzc</u>

MECHANICAL ENGINEERING

Course Code	Design Thinking for In	novotion	T	Т	D	\mathbf{C}	
20A99401	Design Thinking for Innovation (Common to All branches of Engineering)		<u>L</u> 2	1	P 0	<u>C</u> 0	
Pre-requisite	NIL	Semester			V	U	
Course Objectives:							
The objective of this course is to familiarize students with design thinking process as a tool for							
breakthrough innovation. It aims to equip students with design thinking skills and ignite the minds to							
	as, develop solutions for real-time pr		ins und	iginte	the h	ind to	
Course Outcomes (C							
• Define the co	ncepts related to design thinking.						
	undamentals of Design Thinking and	l innovation					
	sign thinking techniques for solving		sectors				
	ork in a multidisciplinary environme	ent					
	value of creativity						
• Formulate sp	ecific problem statements of real tim	ne issues					
UNIT - I	Introduction to Design Thinking				1) Hrs	
	ints and principles of Design, basics	of design-dot line	shape	form as			
	Principles of design. Introduction t						
New materials in Indu		8,	j		0		
	-						
UNIT - II	Design Thinking Process) Hrs	
	ess (empathize, analyze, idea & p						
	inking in social innovations. Tools	of design thinking -	persor	i, costi	ımer,	Journey	
map, brain storming,	product development						
Activity. Every stude	ent presents their idea in three minu	tae. Evary student ca	n nrace	nt dasi	an nr	ocass in	
	ram or flow chart etc. Every student						
the form of now dag	fun of now chart etc. Every student	should explain abou	i produ		Topin		
UNIT - III	Innovation				8	Hrs	
	ifference between innovation and						
	vity to Innovation. Teams for inn	novation, Measuring	the ir	npact a	and v	alue of	
creativity.							
Activity Dahota on							
value-based innovation	innersation and anestistity. Flows on	d alonning from ide			- D-	hata an	
	innovation and creativity, Flow an	d planning from ide	a to ini	novatio	n, De	bate on	
	on.	d planning from ide	a to ini	novatio			
UNIT - IV	on. Product Design				8	Hrs	
UNIT - IV Problem formation, in	on. Product Design ntroduction to product design, Prod	uct strategies, Produ			8	Hrs	
UNIT - IV Problem formation, in	on. Product Design	uct strategies, Produ			8	Hrs	
UNIT - IV Problem formation, in product specifications	on. Product Design ntroduction to product design, Prod	uct strategies, Produ a Case studies.	ct valu	e, Prod	8 uct pl	Hrs anning,	
UNIT - IV Problem formation, in product specifications Activity: Importance	on. Product Design ntroduction to product design, Prod s. Innovation towards product design of modelling, how to set specification	uct strategies, Produ a Case studies.	ct valu	e, Prod	8 uct p design	Hrs anning, ı.	
UNIT - IV Problem formation, in product specifications Activity: Importance UNIT - V	on. Product Design ntroduction to product design, Prod s. Innovation towards product design of modelling, how to set specification Design Thinking in Business Proc	uct strategies, Produ a Case studies. ons, Explaining their	ct valu own pr	e, Prod	8 uct pl design	Hrs anning, ı.) Hrs	
UNIT - IVProblem formation, in product specificationsActivity: ImportanceUNIT - VDesign Thinking app	Product Design ntroduction to product design, Prod s. Innovation towards product design of modelling, how to set specification Design Thinking in Business Prod lied in Business & Strategic Innov	uct strategies, Produ a Case studies. ons, Explaining their cesses ation, Design Think	ct valu own pr	e, Prod	8 uct pl desigr	Hrs anning,) Hrs redefine	
UNIT - IVProblem formation, in product specificationsActivity: ImportanceUNIT - VDesign Thinking app business – Business	Product Design ntroduction to product design, Prod s. Innovation towards product design of modelling, how to set specification Design Thinking in Business Prod lied in Business & Strategic Innov challenges: Growth, Predictability	uct strategies, Produ a Case studies. ons, Explaining their cesses ation, Design Think ty, Change, Mainta	ct valu own pr	e, Prod roduct o nciples Relevan	8 uct pl design 10 that mace, 1	Hrs anning, a.) Hrs redefine Extreme	
UNIT - IVProblem formation, in product specificationsActivity: ImportanceUNIT - VDesign Thinking appbusiness – Business competition, Standard	Product Design ntroduction to product design, Prod s. Innovation towards product design of modelling, how to set specification Design Thinking in Business Prod lied in Business & Strategic Innov challenges: Growth, Predictability dization. Design thinking to meet	uct strategies, Produ n Case studies. ons, Explaining their cesses ation, Design Think ty, Change, Mainta corporate needs. De	ct valu own pr ing prin ining 1 sign th	e, Prod roduct o nciples Relevan inking	8 uct pl design 10 that p nce, 1 for S	Hrs anning, a.) Hrs redefine Extreme	
UNIT - IV Problem formation, in product specifications Activity: Importance UNIT - V Design Thinking app business – Business competition, Standard	Product Design ntroduction to product design, Prod s. Innovation towards product design of modelling, how to set specification Design Thinking in Business Prod lied in Business & Strategic Innov challenges: Growth, Predictability	uct strategies, Produ n Case studies. ons, Explaining their cesses ation, Design Think ty, Change, Mainta corporate needs. De	ct valu own pr ing prin ining 1 sign th	e, Prod roduct o nciples Relevan inking	8 uct pl design 10 that p nce, 1 for S	Hrs anning, a.) Hrs redefine Extreme	
UNIT - IVProblem formation, in product specificationsActivity: ImportanceUNIT - VDesign Thinking appbusiness - Business competition, Standard Defining and testing I	Product Design ntroduction to product design, Prod s. Innovation towards product design of modelling, how to set specification Design Thinking in Business Prod lied in Business & Strategic Innov challenges: Growth, Predictability dization. Design thinking to meet Business Models and Business Case	uct strategies, Produ a Case studies. ons, Explaining their cesses ation, Design Think ty, Change, Mainta corporate needs. De s. Developing & testi	ct valu own pr ing prin ining I sign th ng prof	e, Prod roduct o nciples Relevan inking rotypes	8 uct pl design 10 that n nce, 1 for S	Hrs anning, a.) Hrs redefine Extreme	
UNIT - IVProblem formation, in product specificationsActivity: ImportanceUNIT - VDesign Thinking appbusiness - Business competition, Standard Defining and testing I	Product Design ntroduction to product design, Prod s. Innovation towards product design of modelling, how to set specification Design Thinking in Business Prod lied in Business & Strategic Innov challenges: Growth, Predictability dization. Design thinking to meet	uct strategies, Produ a Case studies. ons, Explaining their cesses ation, Design Think ty, Change, Mainta corporate needs. De s. Developing & testi	ct valu own pr ing prin ining I sign th ng prof	e, Prod roduct o nciples Relevan inking rotypes	8 uct pl design 10 that n nce, 1 for S	Hrs anning, a.) Hrs redefine Extreme	
UNIT - IVProblem formation, in product specificationsActivity: ImportanceUNIT - VDesign Thinking appbusiness - Business competition, Standard Defining and testing I	Product Design ntroduction to product design, Prod s. Innovation towards product design of modelling, how to set specification Design Thinking in Business Prod lied in Business & Strategic Innov challenges: Growth, Predictability dization. Design thinking to meet Business Models and Business Case	uct strategies, Produ a Case studies. ons, Explaining their cesses ation, Design Think ty, Change, Mainta corporate needs. De s. Developing & testi	ct valu own pr ing prin ining I sign th ng prof	e, Prod roduct o nciples Relevan inking rotypes	8 uct pl design 10 that n nce, 1 for S	Hrs anning, a.) Hrs redefine Extreme	
UNIT - IVProblem formation, in product specificationsActivity: ImportanceUNIT - VDesign Thinking app business – Business competition, Standard Defining and testing IActivity: How to manTextbooks: 1. Change by design,	Product Design ntroduction to product design, Prod s. Innovation towards product design of modelling, how to set specification Design Thinking in Business Prod lied in Business & Strategic Innov challenges: Growth, Predictability dization. Design thinking to meet Business Models and Business Case tket our own product, About mainter Tim Brown, Harper Bollins (2009)	uct strategies, Produ n Case studies. ons, Explaining their cesses ation, Design Think ty, Change, Mainta corporate needs. De s. Developing & testi nance, Reliability and	ct valu own pr ing prin ining 1 sign th ng prof	e, Prod roduct o nciples Relevan inking rotypes or start	8 uct pl design 10 that n nce, 1 for S	Hrs anning, a.) Hrs redefine Extreme	
UNIT - IVProblem formation, in product specificationsActivity: ImportanceUNIT - VDesign Thinking app business – Business competition, Standard Defining and testing IActivity: How to manTextbooks: 1. Change by design,	Product Design ntroduction to product design, Prod s. Innovation towards product design of modelling, how to set specification Design Thinking in Business Prod lied in Business & Strategic Innov challenges: Growth, Predictability dization. Design thinking to meet Business Models and Business Case tket our own product, About mainter	uct strategies, Produ n Case studies. ons, Explaining their cesses ation, Design Think ty, Change, Mainta corporate needs. De s. Developing & testi nance, Reliability and	ct valu own pr ing prin ining 1 sign th ng prof	e, Prod roduct o nciples Relevan inking rotypes or start	8 uct pl design 10 that n nce, 1 for S	Hrs anning, a.) Hrs redefine Extreme	

MECHANICAL ENGINEERING

- 1. Design Thinking in the Classroom by David Lee, Ulysses press
- 2. Design the Future, by Shrrutin N Shetty, Norton Press
- 3. Universal principles of design- William lidwell, kritinaholden, Jill butter.
- 4. The era of open innovation chesbrough.H

Online Learning Resources:

https://nptel.ac.in/courses/110/106/110106124/ https://nptel.ac.in/courses/109/104/109104109/ https://swayam.gov.in/nd1_noc19_mg60/preview

MECHANICAL ENGINEERING

COMMUNITY SERVICE PROJECTExperiential learning through community engagement

Introduction

- Community Service Project is an experiential learning strategy that integrates meaningful community service with instruction, participation, learning and community development
- Community Service Project involves students in community development and service activities and applies the experience to personal and academic development.
- Community Service Project is meant to link the community with the college for mutual benefit. The community will be benefited with the focused contribution of the college students for the village/ local development. The college finds an opportunity to develop social sensibility and responsibility among students and also emerge as a socially responsible institution.

Objective

Community Service Project should be an integral part of the curriculum, as an alternative to the 2 months of Summer Internships / Apprenticeships / On the Job Training, whenever there is an exigency when students cannot pursue their summer internships. The specific objectives are;

- To sensitize the students to the living conditions of the people who are around them,
- To help students to realize the stark realities of the society.
- To bring about an attitudinal change in the students and help them to develop societal consciousness, sensibility, responsibility and accountability
- To make students aware of their inner strength and help them to find new /out of box solutions to the social problems.
- To make students socially responsible citizens who are sensitive to the needs of the disadvantaged sections.
- To help students to initiate developmental activities in the community in coordination with public and government authorities.
- To develop a holistic life perspective among the students by making them study culture, traditions, habits, lifestyles, resource utilization, wastages and its management, social problems, public administration system and the roles and responsibilities of different persons across different social systems.

Implementation of Community Service Project

- Every student should put in a 6 weeks for the Community Service Project during the summer vacation.
- Each class/section should be assigned with a mentor.
- Specific Departments could concentrate on their major areas of concern. For example, Dept. of Computer Science can take up activities related to Computer Literacy to different sections of people like youth, women, house-wives, etc
- A log book has to be maintained by each of the student, where the activities undertaken/involved to be recorded.
- The logbook has to be countersigned by the concerned mentor/faculty incharge.
- Evaluation to be done based on the active participation of the student and grade could be awarded by the mentor/faculty member.

MECHANICAL ENGINEERING

- The final evaluation to be reflected in the grade memo of the student.
- The Community Service Project should be different from the regular programmes of NSS/NCC/Green Corps/Red Ribbon Club, etc.
- Minor project report should be submitted by each student. An internal Viva shall also be conducted by a committee constituted by the principal of the college.
- Award of marks shall be made as per the guidelines of Internship/apprentice/ on the job training

Procedure

- A group of students or even a single student could be assigned for a particular habitation or village or municipal ward, as far as possible, in the near vicinity of their place of stay, so as to enable them to commute from their residence and return back by evening or so.
- The Community Service Project is a twofold one -
 - First, the student/s could conduct a survey of the habitation, if necessary, in terms of their own domain or subject area. Or it can even be a general survey, incorporating all the different areas. A common survey format could be designed. This should not be viewed as a duplication of work by the Village or Ward volunteers, rather, it could be another primary source of data.
 - Secondly, the student/s could take up a social activity, concerning their domain or subject area. The different areas, could be like
 - Agriculture
 - Health
 - Marketing and Cooperation
 - Animal Husbandry
 - Horticulture
 - Fisheries
 - Sericulture
 - Revenue and Survey
 - Natural Disaster Management
 - Irrigation
 - Law & Order
 - Excise and Prohibition
 - Mines and Geology
 - Energy
 - Internet
 - Free Electricity
 - Drinking Water

EXPECTED OUTCOMES

BENEFITS OF COMMUNITY SERVICE PROJECT TO STUDENTS

Learning Outcomes

- Positive impact on students' academic learning
- Improves students' ability to apply what they have learned in "the real world"

MECHANICAL ENGINEERING

- Positive impact on academic outcomes such as demonstrated complexity of understanding, problem analysis, problem-solving, critical thinking, and cognitive development
- Improved ability to understand complexity and ambiguity

Personal Outcomes

- Greater sense of personal efficacy, personal identity, spiritual growth, and moral development
- Greater interpersonal development, particularly the ability to work well with others, and build leadership and communication skills

Social Outcomes

- Reduced stereotypes and greater inter-cultural understanding
- Improved social responsibility and citizenship skills
- Greater involvement in community service after graduation

Career Development

- Connections with professionals and community members for learning and career opportunities
- Greater academic learning, leadership skills, and personal efficacy can lead to greater opportunity

Relationship with the Institution

- Stronger relationships with faculty
- Greater satisfaction with college
- Improved graduation rates

BENEFITS OF COMMUNITY SERVICE PROJECT TO FACULTY MEMBERS

- Satisfaction with the quality of student learning
- New avenues for research and publication via new relationships between faculty and community
- Providing networking opportunities with engaged faculty in other disciplines or institutions
- A stronger commitment to one's research

BENEFITS OF COMMUNITY SERVICE PROJECT TO COLLEGES AND UNIVERSITIES

- Improved institutional commitment
- Improved student retention
- Enhanced community relations

BENEFITS OF COMMUNITY SERVICE PROJECT TO COMMUNITY

- Satisfaction with student participation
- Valuable human resources needed to achieve community goals
- New energy, enthusiasm and perspectives applied to community work
- Enhanced community-university relations.

SUGGESTIVE LIST OF PROGRAMMES UNDER COMMUNITY SERVICE PROJECT

The following the recommended list of projects for Engineering students. The lists are not exhaustive and open for additions, deletions and modifications. Colleges are expected to focus on specific local issues for this kind of projects. The students are expected to carry out these projects with involvement, commitment, responsibility and accountability. The mentors of a group of students should take the

MECHANICAL ENGINEERING

responsibility of motivating, facilitating, and guiding the students. They have to interact with local leadership and people and appraise the objectives and benefits of this kind of projects. The project reports shall be placed in the college website for reference. Systematic, Factual, methodical and honest reporting shall be ensured.

For Engineering Students

- 1. Water facilities and drinking water availability
- 2. Health and hygiene
- 3. Stress levels and coping mechanisms
- 4. Health intervention programmes
- 5. Horticulture
- 6. Herbal plants
- 7. Botanical survey
- 8. Zoological survey
- 9. Marine products
- 10. Aqua culture
- 11. Inland fisheries
- 12. Animals and species
- 13. Nutrition
- 14. Traditional health care methods
- 15. Food habits
- **16.** Air pollution
- 17. Water pollution
- 18. Plantation
- **19. Soil protection**
- 20. Renewable energy
- 21. Plant diseases
- 22. Yoga awareness and practice
- 23. Health care awareness programmes and their impact
- 24. Use of chemicals on fruits and vegetables
- 25. Organic farming
- 26. Crop rotation
- 27. Floury culture
- 28. Access to safe drinking water
- 29. Geographical survey
- 30. Geological survey
- 31. Sericulture
- 32. Study of species
- **33. Food adulteration**
- 34. Incidence of Diabetes and other chronic diseases
- 35. Human genetics
- 36. Blood groups and blood levels
- 37. Internet Usage in Villages
- 38. Android Phone usage by different people
- 39. Utilisation of free electricity to farmers and related issues
- 40. Gender ration in schooling lvel- observation.

MECHANICAL ENGINEERING

Complimenting the community service project the students may be involved to take up some awareness campaigns on social issues/special groups. The suggested list of programmes are;

Programmes for School Children

- 1. Reading Skill Programme (Reading Competition)
- 2. Preparation of Study Materials for the next class.
- 3. Personality / Leadership Development
- 4. Career Guidance for X class students
- 5. Screening Documentary and other educational films
- 6. Awareness Programme on Good Touch and Bad Touch (Sexual abuse)
- 7. Awareness Programme on Socially relevant themes.

Programmes for Women Empowerment

- 1. Government Guidelines and Policy Guidelines
- 2. Womens' Rights
- 3. Domestic Violence
- 4. Prevention and Control of Cancer
- 5. Promotion of Social Entrepreneurship

General Camps

- 1. General Medical camps
- 2. Eye Camps
- 3. Dental Camps
- 4. Importance of protected drinking water
- 5. ODF awareness camp
- 6. Swatch Bharath
- 7. AIDS awareness camp
- 8. Anti Plastic Awareness
- 9. Programmes on Environment
- 10. Health and Hygiene
- 11. Hand wash programmes
- 12. Commemoration and Celebration of important days

Programmes for Youth Empowerment

- 1. Leadership
- 2. Anti-alcoholism and Drug addiction
- 3. Anti-tobacco
- 4. Awareness on Competitive Examinations
- 5. Personality Development

Common Programmes

- 1. Awareness on RTI
- 2. Health intervention programmes
- 3. Yoga
- 4. Tree plantation
- 5. Programmes in consonance with the Govt. Departments like
 - i. Agriculture
 - ii. Health
 - iii. Marketing and Cooperation

MECHANICAL ENGINEERING

- iv. Animal Husbandry
- v. Horticulture
- vi. Fisheries
- vii. Sericulture
- viii. Revenue and Survey
 - ix. Natural Disaster Management
- x. Irrigation
- xi. Law & Order
- xii. Excise and Prohibition
- xiii. Mines and Geology
- xiv. Energy

Role of Students:

- Students may not have the expertise to conduct all the programmes on their own. The students then can play a facilitator role.
- For conducting special camps like Health related, they will be coordinating with the Governmental agencies.
- As and when required the College faculty themselves act as Resource Persons.
- Students can work in close association with Non-Governmental Organizations like Lions Club, Rotary Club, etc or with any NGO actively working in that habitation.
- And also with the Governmental Departments. If the programme is rolled out, the District Administration could be roped in for the successful deployment of the programme.
- An in-house training and induction programme could be arranged for the faculty and participating students, to expose them to the methodology of Service Learning.

Timeline for the Community Service Project Activity

Duration: 8 weeks

1. Preliminary Survey (One Week)

- A preliminary survey including the socio-economic conditions of the allotted habitation to be conducted.
- A survey form based on the type of habitation to be prepared before visiting the habitation with the help of social sciences faculty. (However, a template could be designed for different habitations, rural/urban.
- The Governmental agencies, like revenue administration, corporation and municipal authorities and village secreteriats could be aligned for the survey.

2. Community Awareness Campaigns (One Week)

• Based on the survey and the specific requirements of the habitation, different awareness campaigns and programmes to be conducted, spread over two weeks of time. The list of activities suggested could be taken into consideration.

3. Community Immersion Programme (Three Weeks)

Along with the Community Awareness Programmes, the student batch can also work with any one of the below listed governmental agencies and work in tandem with them. This community involvement programme will involve the students in exposing themselves to the

MECHANICAL ENGINEERING

experiential learning about the community and its dynamics. Programmes could be in consonance with the Govt. Departments.

4. Community Exit Report (One Week)

• During the last week of the Community Service Project, a detailed report of the outcome of the 8 weeks work to be drafted and a copy shall be submitted to the local administration. This report will be a basis for the next batch of students visiting that particular habitation. The same report submitted to the teacher-mentor will be evaluated by the mentor and suitable marks are awarded for onward submission to the University.

Throughout the Community Service Project, a daily log-book need to be maintained by the students batch, which should be countersigned by the governmental agency representative and the teacher-mentor, who is required to periodically visit the students and guide them.