

M.TECH. IN MACHINE DESIGN COURSE STRUCTURE & SYLLABI

SEMESTER – I

S. No.	Course	Course Name	Categor	Hou	Hours per week		Cred
	codes		y	L	Т	Р	its
1.	21DBS101	Computational Methods	PC	3	0	0	3
2.	21D04101	Advance Finite element methods	PC	3	0	0	3
3.	21D15101a 21D15101b 21D15101c	Program Elective Course - I Advanced Mechanisms Computer Applications in Design Materials Technology	DE	3	0	0	2
	21D15102a 21D15102b 21D15102c	Program Elective Course - II Advanced Mechanics of Solids Tribology in Design Gear Engineering	PE	3	0	0	3
5.	21D15103	Numerical Simulation Laboratory	PC	0	0	4	2
6.	21D15104	Advanced Computer Aided Design Lab	PC	0	0	4	2
7.	21DRM101	Research Methodology and IPR	MC	2	0	0	2
8.	21DAC101a 21DAC101b 21DAC101c	Audit Course – I English for Research paper writing Disaster Management Sanskrit for Technical Knowledge	AC	2	0	0	0
Total							18

M.TECH. IN MACHINE DESIGN COURSE STRUCTURE & SYLLABI

SEMESTER – II

S.No.	Course	Course Name	Categor	Hours per week		Credit	
	codes		У	L	Т	Р	S
1.	21D04201	Advanced Optimization Techniques	PC	3	0	0	3
2.	21D15201	Fracture fatigue and creep deformation	PC	3	0	0	3
3.	21D15202a 21D15202b 21D15202c	Program Elective Course – III Industrial Robotics and Expert Systems Experimental Stress Analysis Theory of Plasticity	PE	3	0	0	3
4.	21D15203a 21D15203b 21D15203c	Program Elective Course – IV Mechanical Vibrations Design For Manufacturing Pressure Vessel Design	PE	3	0	0	3
5.	21D15204	Machine Dynamics Laboratory	PC	0	0	4	2
6.	21D15205	Modelling and Analysis Lab	PC	0	0	4	2
7.	21D15206	Technical seminar	PR	0	0	4	2
8.	21DAC201a 21DAC201b 21DAC201c	Audit Course – II Pedagogy Studies Stress Management for Yoga Personality Development through Life Enlightenment Skills	AC	2	0	0	0
		Total					18

M.TECH. IN MACHINE DESIGN COURSE STRUCTURE & SYLLABI

SEMSTER - III

S.No.	Course	Course Name	Category	Hou	rs pe	Credit	
	codes			L	Т	Р	S
1.	21D15301a 21D15301b 21D15301c	Program Elective Course – V Quality Concepts in Design Design of Hydraulic and Pneumatic Systems Applied Engineering Acoustics	PE	3	0	0	3
2.	21DOE301c 21DOE301g 21DOE301h	Open Elective Business Analytics Internet Of Things Mechatronics	OE	3	0	0	3
3.	21D15302	Dissertation Phase – I	PR	0	0	20	10
4.	21D15303	Co-curricular Activities					2
		Total					18

SEMESTER - IV

S.No.	Course codes	Course Name	Category	Hou	Hours per week		Cred
				L	Т	Р	its
1.	21D15401	Dissertation Phase – II	PR	0	0	32	16
		Total					16

Course Code	COMPUTATIONAL METHODS	L	Т	Р	С
21DBS101		3	0	0	3
	Semester			Ι	
Course Objective					
	Il demonstrate aptitude in standard numerical techniques for solvin	ngva	rious	clas	ses of
problems.					
	Il learn the theory underlying the derivation of standard numerical	techr	nique	s and	l the
-	nt of algorithms.	• •			
	f engineering problems drawn from different disciplines of mecha	nıcal	engu	neern	ng.
	s (CO): Student will be able to	1 1		1	· 1
• To enable stu methods.	dents to formulate and solve engineering problems that are not o	enabl	e to	analy	tical
	ate the application of numerical methods to data analysis and optir	nol d	ociar		
UNIT – I	the the application of numerical methods to data analysis and opti-			Hrs:	0
	numerical methods applied to engineering problems: Exampl				
	k notation – Determinants and inversion – Iterative methods – Rel				
	ear equations – computer programs				
	ration: Newton-Cotes integration formulas – Simpson's r	ules,	Ga	ussia	n
quadrature. Adapt					
UNIT – II		Leo	ture	Hrs:	09
	One dimensional unconstrained optimization, multidimension				
	ct methods and gradient search methods, constrained optimization				
	problems and characteristic value problems: Shooting method		lutio	n thro	ough
a set of equations	- Derivative boundary conditions - Rayleigh - Ritzmethod - C	hara	cteris	stic v	alue
problems.		T			
UNIT – III				Hrs:	
	ons of partial differential equations: Laplace's equations – Re				
	n - Iterative methods for Laplace's equations - poisson equat				
	ry conditions – Irregular and non – rectangular grids – Matrix patite element method.	terns	, spa	rsene	2SS -
ADI metnod – Fin	ne element method.				
UNIT – IV		Lec	cture	Hrs:	09
Parabolic partial	differential equations: Explicit method - Crank - Nickelson n	netho	d –I	Deriva	ative
	on - Stability and convergence criteria - Finite element for hea	t flo	w –	comp	outer
programs.					
•	al differential equations: Solving wave equation by finite diffe				•
	d -method of characteristics-wave equation in two space dir	nensi	ions-	com	outer
programs. UNIT - V		Iac	tura	Hrs:	00
	d approximation of functions: Least square approximation fi				
	squares –regression analysis- multiple linear regression, non l				
computer program		moul	108	. 0001	
Textbooks:					
	Iethods for Engineers", Steven C.Chapra, Raymond P.Canale Tata	a Mc	-Gra	w hil	1
	nerical analysis", Curtis F.Gerald, partick.O.WheatlyAddison-wesl				
2. Applica liuli	ionear analysis, curus i .oeraid, partick.o. witeatiyAddisoli-wesi	Cy,1	,0,		

M.TECH. IN MACHINE DESIGN COURSE STRUCTURE & SYLLABI

3."Numerical methods", Douglas J. Faires, Riched Burden Brooks/cole publishing company, 1998. Second edition.

Reference Books:

1. "Numerical mathematics and computing", Ward cheney &David Kincaid Brooks/Cole publishing company1999, fourth edition.

2. "Mathematical methods for physics and engineering" Riley K.F.M.P.Hobson.&. Bence S.J.Cambridge university press, 1999.

Online Learning Resources:

1.https://www.coursera.org/lecture/datascimed/computational-methods-86iP7

Semester I Course Objectives: • • You learn modern analysis techniques used widely in engineeringpractice and the sciences, and you use these techniques in a general finite element program. • You learn how to establish computational models of problems of solids and fluids, solvethem on your laptop, and assess the accuracy of the results. • You capitalize on your knowledge of mechanics, reinforce your knowledge, and solve problems that can only be tackled numerically on the computer. Great knowledge in yourtool box whatever your goals. Course Outcomes (CO): Student will be able to • • Solve 1- D problems. & 2- D Structural & Heat Transfer Problems using FEA • Solve 1- D problems. & 2- D Structural & Heat Transfer Problems using FEA • Formulate & solve structural & dynamics problems UNIT - I Lecture Hrs: 09 Formulation Techniques: Methodology, Engineering problems and governing differential equations finite elements., Variational methods-potential energy method, Raleigh Ritz method, strong and wea forms, Galerkin and weighted residual methods: calculus of variations, Essential and natural boundar conditions. UNIT - II Lecture Hrs: 09 One-dimensional finite element methods: Bar elements, temperature effects. Element matrices, assembling of global stiffness matrix, Application of boundary conditions, Elimination and penalty approaches, solution for displacements, reaction, stresses, temperature effects, Quadratic Element,	Course Code	ADVANCED FINITE ELEMENT METHODS	L	Т	Р	С
Course Objectives: • You learn modern analysis techniques used widely in engineeringpractice and the sciences, and you use these techniques in a general finite element program. • You learn how to establish computational models of problems of solids and fluids, solvethem on your laptop, and assess the accuracy of the results. • You capitalize on your knowledge of mechanics, reinforce your knowledge, and solve problems that can only be tackled numerically on the computer. Great knowledge in yourtool box whatever your goals. Course Outcomes (CO): Student will be able to • Students will learn the mathematical formulation of the finite element method and how to apply it to basic (linear) ordinary and partial differential equations. • Solve 1- D problems. & 2 - D Structural & Heat Transfer Problems using FEA • Solve Trusses & Beams Problems using FEA • Formulate & solve structural & dynamics problems UNIT -1 Lecture Hrs: 09 Formulation Techniques: Methodology, Engineering problems and governing differential equations finite elements, Variational methods, calculus of variations, Essential and natural boundar conditions. UNIT -1 I Lecture Hrs: 09 One-dimensional finite element methods: Bar elements, temperature effects. Element matrices, assembling of global stiffness matrix, Application of boundary conditions, Elimination and penalty approaches, solution for displacements, reaction, stresses, temperature effects, Quadratic Element, teatra stress, reaction, stresses, temperature effects, Quadratic Element, teatra for splacements, reaction, stresse	21D04101		3	0	0	3
You learn modern analysis techniques used widely in engineeringpractice and the sciences, and you use these techniques in a general finite element program. You learn how to establish computational models of problems of solids and fluids, solvethem on your laptop, and assess the accuracy of the results. You capitalize on your knowledge of mechanics, reinforce your knowledge, and solve problems that can only be tackled numerically on the computer. Great knowledge in yourtool box whatever your goals. Solve Touromes (CO): Student will be able to Students will learn the mathematical formulation of the finite element method and how to apply it to basic (linear) ordinary and partial differential equations. Solve 1- D problems. & 2 - D Structural & Heat Transfer Problems using FEA Solve Trusses & Beams Problems using FEA Solve Trusses & Methodology, Engineering problems and governing differential equations finite elements, Variational methods-potential energy method, Raleigh Ritz method, strong and wea forms, Galerkin and weighted residual methods, calculus of variations, Essential and natural boundar conditions. UNIT - II		Semester]	[
You learn modern analysis techniques used widely in engineeringpractice and the sciences, and you use these techniques in a general finite element program. You learn how to establish computational models of problems of solids and fluids, solvethem on your laptop, and assess the accuracy of the results. You capitalize on your knowledge of mechanics, reinforce your knowledge, and solve problems that can only be tackled numerically on the computer. Great knowledge in yourtool box whatever your goals. Solve Touromes (CO): Student will be able to Students will learn the mathematical formulation of the finite element method and how to apply it to basic (linear) ordinary and partial differential equations. Solve 1- D problems. & 2 - D Structural & Heat Transfer Problems using FEA Solve Trusses & Beams Problems using FEA Solve Trusses & Methodology, Engineering problems and governing differential equations finite elements, Variational methods-potential energy method, Raleigh Ritz method, strong and wea forms, Galerkin and weighted residual methods, calculus of variations, Essential and natural boundar conditions. UNIT - II	~ ~ ~ ~ ~ ~					
and you use these techniques in a general finite element program. You learn how to establish computational models of problems of solids and fluids, solvethem on your laptop, and assess the accuracy of the results. You capitalize on your knowledge of mechanics, reinforce your knowledge, and solve problems that can only be tackled numerically on the computer. Great knowledge in yourtool box whatever your goals. Course Outcomes (CO): Student will be able to Students will learn the mathematical formulation of the finite element method and how to apply it to basic (linear) ordinary and partial differential equations. Solve 1- D problems. & 2- D Structural & Heat Transfer Problems using FEA Solve Trusses & Beams Problems using FEA Formulate & solve structural & dynamics problems UNIT - I Lecture Hrs: 09 Formulation Techniques: Methodology, Engineering problems and governing differential equations. UNIT - II Lecture Hrs: 09 Cone-dimensional finite element methods, calculus of variations, Essential and natural boundar conditions. UNIT - II Lecture Hrs: 09 Cone-dimensional finite element methods: Bar elements, temperature effects. Element matrices, assembling of global stiffness matrix, Application of boundary conditions. Examples: - one dimensional fin. UNIT - II Lecture Hrs: 09 Trusses: Element matrices, assembling of global stiffness matrix, solution for displacements, reaction, stresses, temperature effects. Quadratic Element, teat transfer problems: CST, LST, four noded and eight nodded rectangular elements, Lagrange basis for triangles and rectangles, serendipity interpolation functions. Axisymmetric Problems: Axisymmetric formulations, Element matrices, boundary conditions. Elements, target and creategies, serendipity interpolation functions. Axisymmetric Problems: Concepts, sub parametric, super parametric elements, numerical integration. UNIT - IV Lecture Hrs: 09 Finite elements in Structural Dynamics: Dynamic equations, eigen value problems, and their solution methods, simple problems: Convergence, h-refinemen						
 You learn how to establish computational models of problems of solids and fluids, solvethem on your laptop, and assess the accuracy of the results. You capitalize on your knowledge of mechanics, reinforce your knowledge, and solve problems that can only be tackled numerically on the computer. Great knowledge in yourtool box whatever your goals. Course Outcomes (CO): Student will be able to Students will learn the mathematical formulation of the finite element method and how to apply it to basic (linear) ordinary and partial differential equations. Solve 1- D problems. & 2- D Structural & Heat Transfer Problems using FEA Solve Trusses & Beams Problems using FEA Formulate & solve structural & dynamics problems UNIT -1 Lecture Hrs: 09 Formulation Techniques: Methodology, Engineering problems and governing differential equations finite elements, Variational methods, calculus of variations, Essential and natural boundar conditions. UNIT -1			nd th	e scie	ences	,
 on your laptop, and assess the accuracy of the results. You capitalize on your knowledge of mechanics, reinforce your knowledge, and solve problems that can only be tackled numerically on the computer. Great knowledge in yourtool box whatever your goals. Course Outcomes (CO): Student will be able to Students will learn the mathematical formulation of the finite element method and how to apply it to basic (linear) ordinary and partial differential equations. Solve 1- D problems. & 2-D Structural & Heat Transfer Problems using FEA Solve Trusses & Beams Problems using FEA Formulate & solve structural & dynamics problems UNIT -1 Lecture Hrs: 09 Formulation Techniques: Methodology, Engineering problems and governing differential equations finite elements., Variational methods, calculus of variations, Essential and natural boundar conditions. UNIT -1 Lecture Hrs: 09 One-dimensional finite element methods: Bar elements, temperature effects. Element matrices, assembling of global stiffness matrix, Application of boundary conditions, Elimination and penalty approaches, solution for displacements, tractorin, stresses, temperature effects. Quadratic Element, Heat transfer problems: One-dimensional, conduction and convection problems. Examples: - one dimensional fin. UNIT - III Lecture Hrs: 09 Trusses: Element matrices, assembling of global stiffness matrix, solution for displacements, reaction, stresses, temperature effects. Beams and Frames: Element matrices, assembling of global stiffness matrix, solution for displacements, reaction, stresses, boundary conditions. Heat Transfer problems: Concepts, sub parametric, boundary conditions. Heat Transfer problems: Conduction and convection, examples: - two-dimensional fin. UNIT - IV Lecture Hrs: 09 Trusses: Element matric	•					
You capitalize on your knowledge of mechanics, reinforce your knowledge, and solve problems that can only be tackled numerically on the computer. Great knowledge in yourtool box whatever your goals. Course Outcomes (CO): Student will be able to Students will learn the mathematical formulation of the finite element method and how to apply it to basic (linear) ordinary and partial differential equations. Solve 1- D problems. & 2- D Structural & Heat Transfer Problems using FEA Solve Trusses & Beams Problems using FEA Formulate & solve structural & dynamics problems UNT - I Lecture Hrs: 09 Formulation Techniques: Methodology, Engineering problems and governing differential equations: finite elements., Variational methods-potential energy method, Raleigh Ritz method, strong and wea forms, Galerkin and weighted residual methods, calculus of variations, Essential and natural boundar conditions. UNT - II Lecture Hrs: 09 One-dimensional finite element methods: Bar elements, temperature effects. Element matrices, assembling of global stiffness matrix, Application of boundary conditions, Elimination and penalty approaches, solution for displacements, reaction, stresses, temperature effects. Quadratic Element, theat transfer problems: One-dimensional, conduction and convection problems. Examples: - one dimensional fin. UNT - III			l fluic	ls, so	lveth	em
problems that can only be tackled numerically on the computer. Great knowledge in yourtool box whatever your goals. Course Outcomes (CO): Student will be able to • Students will learn the mathematical formulation of the finite element method and how to apply it to basic (linear) ordinary and partial differential equations. • Solve 1- D problems. & 2- D Structural & Heat Transfer Problems using FEA • Formulate & solve structural & dynamics problems UNIT -1 Lecture Hrs: 09 Formulation Techniques: Methodology, Engineering problems and governing differential equations finite elements., Variational methods-potential energy method, Raleigh Ritz method, strong and wea conditions. UNIT - II Lecture Hrs: 09 One-dimensional finite element methods: Bar elements, temperature effects. Element matrices, assembling of global stiffness matrix, Application of boundary conditions. Elimination and penalty approaches, solution for displacements, reaction, stresses, temperature effects, Quadratic Element, Heat transfer problems: One-dimensional, conduction and convection problems. Examples: - one dimensional fin, UNIT - II Lecture Hrs: 09 Trusses: Element matrices, assembling of global stiffness matrix, solution for displacements, reaction, stresses, temperature effects, Quadratic Element, streaster, streaster, section, stresses, temperature effects. Beams and Frames: Element matrices, assembling of global stiffness matrix, solution for displacements, reaction, stresses, temperature effects. Beams and Frames: Element matrices, assembling of global stiffness	-	·				
box whatever your goals. Course Outcomes (CO): Student will be able to • Students will learn the mathematical formulation of the finite element method and how to apply it to basic (linear) ordinary and partial differential equations. • Solve 1- D problems. & 2- D Structural & Heat Transfer Problems using FEA • Formulate & solve structural & dynamics problems • NITT -1 Image: Image						
Course Outcomes (CO): Student will be able to • Students will learn the mathematical formulation of the finite element method and how to apply it to basic (linear) ordinary and partial differential equations. • Solve 1- D problems. & 2- D Structural & Heat Transfer Problems using FEA • Formulate & solve structural & dynamics problems UNIT - I Lecture Hrs: 09 Formulation Techniques: Methodology, Engineering problems and governing differential equations finite elements., Variational methods-potential energy method, Raleigh Ritz method, strong and wea forms, Galerkin and weighted residual methods, calculus of variations, Essential and natural boundar conditions. UNIT - II Lecture Hrs: 09 One-dimensional finite element methods: Bar elements, temperature effects. Element matrices, assembling of global stiffness matrix, Application of boundary conditions, Elimination and penalty approaches, solution for displacements, reaction, stresses, temperature effects, Quadratic Element, UNIT - II UNIT - III Lecture Hrs: 09 Trusses: Element matrices, assembling of global stiffness matrix, solution for displacements, reaction, stresses. Lecture Hrs: 09 Trusses: Element matrices, assembling of global stiffness matrix, solution for displacements, reaction, stresses. Lecture Hrs: 09 Two dimensional problems: CST, LST, four noded and eight nodded rectangular elements. Lagrange basis for triangles and rectangles, serendipity interpolation functions. Axisymmetric Problems: Conduction and convection, examples: - two-dimensional fin. <t< td=""><td></td><td>• • •</td><td>vledg</td><th>e in y</th><th>ourt</th><td>ool</td></t<>		• • •	vledg	e in y	ourt	ool
Students will learn the mathematical formulation of the finite element method and how to apply it to basic (linear) ordinary and partial differential equations. Solve 1- D problems. & 2-D Structural & Heat Transfer Problems using FEA Solve Trusses & Beams Problems using FEA Formulate & solve structural & dynamics problems UNIT - I Lecture Hrs: 09 Formulation Techniques: Methodology, Engineering problems and governing differential equations finite elements., Variational methods-potential energy method, Raleigh Ritz method, strong and wea forms, Galerkin and weighted residual methods, calculus of variations, Essential and natural boundar conditions. UNIT - II Lecture Hrs: 09 One-dimensional finite element methods: Bar elements, temperature effects. Element matrices, assembling of global stiffness matrix, Application of boundary conditions, Elimination and penalty approaches, solution for displacements, reaction, stresses, temperature effects. Quadratic Element, UNIT - II Lecture Hrs: 09 Trusses: Element matrices, assembling of global stiffness matrix, solution for displacements, reaction, stresses, temperature effects. Beams and Frames: Element matrices, assembling of global stiffness matrix, solution for displacements, reaction, stresses, temperature effects. Beams and Frames: Element matrices, assembling of global stiffness matrix, solution for displacements, reaction, stresses. UNT - IV Lecture Hrs: 09 Two dimensional problems: CST, LST, four noded and eight nodded rectangular elements, Lagrange basis for triangles and rectangles, serendipity interpolation functions. Axisymmetric Problems: Conduction and convection, examples: - two-dimensional fin. Isoparametric formulation: Concepts, sub parametric, super parametric elements, numerical integration. UNIT - V Lecture Hrs: 09 Finite elements in Structural Dynamics: Dynamic equations, eigen value problems, and their solution methods, simple problems.						
apply it to basic (linear) ordinary and partial differential equations. Solve 1- D problems. & 2- D Structural & Heat Transfer Problems using FEA Solve Trusses & Beams Problems using FEA Tormulate & solve structural & dynamics problems UNIT -1 Lecture Hrs: 09 Formulation Techniques: Methodology, Engineering problems and governing differential equations finite elements, Variational methods-potential energy method, Raleigh Ritz method, strong and wea forms, Galerkin and weighted residual methods, calculus of variations, Essential and natural boundar conditions. UNIT -II Lecture Hrs: 09 One-dimensional finite element methods: Bar elements, temperature effects. Element matrices, assembling of global stiffness matrix, Application of boundary conditions, Elimination and penalty approaches, solution for displacements, reaction, stresses, temperature effects, Quadratic Element, UNIT - III Lecture Hrs: 09 Trusses: Element matrices, assembling of global stiffness matrix, solution for displacements, reaction, stresses, temperature effects. Beams and Frames: Element matrices, assembling of global stiffness matrix, solution for displacements, reaction, stresses, temperature effects. Beams and Frames: Element matrices, assembling of global stiffness matrix, solution for displacements, reaction, stresses, temperature effects. Beams and Frames: Element matrices, assembling of global stiffness matrix, solution for displacements, reaction, stresses, temperature effects. Beams and Frames: Element matrices, assembling of global stiffness matrix, solution for displacements, reaction, stresses, temperature effects. Beams and Frames: CST, LST, four noded and eight nodded rectangular elements, Lagrange basis for triangles and rectangles, serendipity interpolation functions. Axisymmetric Problems: Conduction and convection, examples: - two-dimensional fin. Isoparametric formulation: Concepts, sub parametric, super parametric elements, numerical integration. UNIT -V Lecture Hrs: 09 Finite elements in Structural Dynamics: Dynamic equatio						
Solve 1- D problems. & 2- D Structural & Heat Transfer Problems using FEA Solve Trusses & Beams Problems using FEA Formulate & solve structural & dynamics problems UNIT - I Lecture Hrs: 09 Formulation Techniques: Methodology, Engineering problems and governing differential equations finite elements., Variational methods-potential energy method, Raleigh Ritz method, strong and we forms, Galerkin and weighted residual methods, calculus of variations, Essential and natural boundar conditions. UNIT - II Lecture Hrs: 09 One-dimensional finite element methods: Bar elements, temperature effects. Element matrices, assembling of global stiffness matrix, Application of boundary conditions, Elimination and penalty approaches, solution for displacements, reaction, stresses, temperature effects, Quadratic Element, Heat transfer problems: One-dimensional, conduction and convection problems. Examples: - one dimensional fini, UVIT - III Lecture Hrs: 09 Trusses: Element matrices, assembling of global stiffness matrix, solution for displacements, reaction, stresses, temperature effects. Beams and Frames: Element matrices, assembling of global stiffness matrix, solution for displacements, reaction, stresses. UVIT - IV Lecture Hrs: 09 Two dimensional problems: CST, LST, four noded and eight nodded rectangular elements, Lagrange basis for triangles and rectangles, serendipity interpolation functions. Axisymmetric Problems: Axisymmetric formulations, Element matrices, boundary conditions. Heat Transfer problems: Conduction and convection, examples: - two-dimensional fin. Isoparametric formulation: Concepts, sub parametric, super parametric elements, numerical integration. UNIT - V Lecture Hrs: 09 Finite elements in Structural Dynamics: Dynamic equations, eigen value problems, and their solution methods, simple problems. Convergence: Requirements for convergence, h-refinement and p-refinement, c			od ai	nd ho	w to	
Solve Trusses & Beams Problems using FEA Formulate & solve structural & dynamics problems UNIT - I Lecture Hrs: 09 Formulation Techniques: Methodology, Engineering problems and governing differential equations finite elements., Variational methods-potential energy method, Raleigh Ritz method, strong and wea forms, Galerkin and weighted residual methods, calculus of variations, Essential and natural boundar conditions. UNIT - II Lecture Hrs: 09 One-dimensional finite element methods: Bar elements, temperature effects. Element matrices, assembling of global stiffness matrix, Application of boundary conditions, Elimination and penalty approaches, solution for displacements, reaction, stresses, temperature effects, Quadratic Element, Heat transfer problems: One-dimensional, conduction and convection problems. Examples: - one dimensional fin, UNIT - III Lecture Hrs: 09 Trusses: Element matrices, assembling of global stiffness matrix, solution for displacements, reaction, stresses, temperature effects. Beams and Frames: Element matrices, assembling of global stiffness matrix, solution for displacements, reaction, stresses. UNIT - IV Lecture Hrs: 09 Trusses: Asisymmetric formulations, Element matrices, boundary conditions. Arisymmetric Problems: Axisymmetric formulations, Element matrices, boundary conditions. Heat Transfer problems: Axisymmetric formulations, Element matrices, boundary conditions. Heat Transfer problems: Conduction and convection, examples: - two-dimensional fin. Isoparametric formulation: Concepts, sub parametric, super parametric elements, numerical integration. UNIT - V Lecture Hrs: 09 Finite elements in Structural Dynamics: Dynamic equations, eigen value problems, and their solution methods, simple problems. Convergence: Requirements for convergence, h-refinement and p-refinement, complete and incomplete interpolation functions, pascal's triangle.						
Formulate & solve structural & dynamics problems UNIT - I Lecture Hrs: 09 Formulation Techniques: Methodology, Engineering problems and governing differential equations finite elements., Variational methods-potential energy method, Raleigh Ritz method, strong and wea conditions. UNIT - II Lecture Hrs: 09 One-dimensional finite element methods: Bar elements, temperature effects. Element matrices, assembling of global stiffness matrix, Application of boundary conditions, Elemination and penalty approaches, solution for displacements, reaction, stresses, temperature effects, Quadratic Element, uNIT - III Lecture Hrs: 09 Trusses: Element matrices, assembling of global stiffness matrix, solution for displacements, reaction, stresses, temperature effects. Element matrices, assembling of global stiffness matrix, solution for displacements, reaction, stresses, temperature effects. UNIT - III Lecture Hrs: 09 Trusses: Element matrices, assembling of global stiffness matrix, solution for displacements, reaction, stresses. UNIT - IV Lecture Hrs: 09 Two dimensional problems: CST, LST, four noded and eight noded rectangular elements, Lagrange basis for triangles and rectangles, serendipity interpolation functions. Axisymmetric Problems: Concepts, sub parametric, super parametric elements, lagrange basis for triangles and rectangles. Two-dimensional fin. Isoparametric formulation: Concepts, sub parametric, super parametric elements, lagrange basis for triangles and rectangles. Two-dimensional fin. Isoparametric formulation: Concepts, sub parametric, super parametric elements, numerical integration. UNIT - V Lecture Hrs: 09 Finite elements in Structural Dynamics: Dynamic equations, eigen value problems, and their solution methods, simple problems. Convergence: Requirements for convergence, h-refinement and p-refinement, complete and incomplete interpolation functions, pascal's			ΞA			
UNIT - I Lecture Hrs: 09 Formulation Techniques: Methodology, Engineering problems and governing differential equations finite elements., Variational methods-potential energy method, Raleigh Ritz method, strong and wea forms, Galerkin and weighted residual methods, calculus of variations, Essential and natural boundar conditions. UNIT - II Lecture Hrs: 09 One-dimensional finite element methods: Bar elements, temperature effects. Element matrices, assembling of global stiffness matrix, Application of boundary conditions, Elimination and penalty approaches, solution for displacements, reaction, stresses, temperature effects, Quadratic Element, Heat transfer problems: One-dimensional, conduction and convection problems. Examples: - one dimensional fin, UNIT - III Lecture Hrs: 09 Trusses: Element matrices, assembling of global stiffness matrix, solution for displacements, reaction, stresses, temperature effects. Beams and Frames: Element matrices, assembling of global stiffness matrix, solution for displacements, reaction, stresses. UNIT - IV Lecture Hrs: 09 Two dimensional problems: CST, LST, four noded and eight nodded rectangular elements, Lagrange basis for triangles and rectangles, serendipity interpolation functions. Axisymmetric problems: Conduction and convection, examples: - two-dimensional fin. Isoparametric formulation: Concepts, sub parametric, super parametric elements, numerical integration. Lecture Hrs: 09 Trusses: Conduction and convection, examples: - two-dimensional fin. Lecture Hrs: 09 Stoparametric formulation						
Formulation Techniques: Methodology, Engineering problems and governing differential equations finite elements., Variational methods-potential energy method, Raleigh Ritz method, strong and wea forms, Galerkin and weighted residual methods, calculus of variations, Essential and natural boundar conditions. UNIT - II Lecture Hrs: 09 One-dimensional finite element methods: Bar elements, temperature effects. Element matrices, assembling of global stiffness matrix, Application of boundary conditions, Elimination and penalty approaches, solution for displacements, reaction, stresses, temperature effects, Quadratic Element, Heat transfer problems: One-dimensional, conduction and convection problems. Examples: - one dimensional fin, UNIT - III Lecture Hrs: 09 Trusses: Element matrices, assembling of global stiffness matrix, solution for displacements, reaction, stresses, temperature effects. Beams and Frames: Element matrices, assembling of global stiffness matrix, solution for displacements, reaction, stresses. UNIT - IV Lecture Hrs: 09 Two dimensional problems: CST, LST, four noded and eight nodded rectangular elements, Lagrange basis for triangles and rectangles, serendipity interpolation functions. Axisymmetric Problems: Conduction and convection, examples: - two-dimensional fin. Isoparametric formulation: Concepts, sub parametric, super parametric elements, numerical integration. Lecture Hrs: 09 Finite elements in Structural Dynamics: Dynamic equations, eigen value problems, and their solution methods, simple problems. Convergence: Requirements for convergence, h-refinement and p-refinement,						
finite elements., Variational methods-potential energy method, Raleigh Ritz method, strong and wea forms, Galerkin and weighted residual methods, calculus of variations, Essential and natural boundar conditions. UNIT - II Lecture Hrs: 09 One-dimensional finite element methods: Bar elements, temperature effects. Element matrices, assembling of global stiffness matrix, Application of boundary conditions, Elimination and penalty approaches, solution for displacements, reaction, stresses, temperature effects, Quadratic Element, Heat transfer problems: One-dimensional, conduction and convection problems. Examples: - one dimensional fin, UNIT - III Lecture Hrs: 09 Trusses: Element matrices, assembling of global stiffness matrix, solution for displacements, reaction, stresses, temperature effects. Beams and Frames: Element matrices, assembling of global stiffness matrix, solution for displacements, reaction, stresses. UNIT - IV Lecture Hrs: 09 Two dimensional problems: CST, LST, four noded and eight nodded rectangular elements, Lagrange basis for triangles and rectangles, serendipity interpolation functions. Axisymmetric Problems: Conduction and convection, examples: - two-dimensional fin. Isoparametric formulation: Concepts, sub parametric, super parametric elements, numerical integration. UNIT - V Lecture Hrs: 09 Finite elements in Structural Dynamics: Dynamic equations, eigen value problems, and their solution methods, simple problems. Convergence: Requirements for convergence, h-refinement and p-refinement, complete and incomplete interpolation functions, pascal's triangle.						
One-dimensional finite element methods: Bar elements, temperature effects. Element matrices, assembling of global stiffness matrix, Application of boundary conditions, Elimination and penalty approaches, solution for displacements, reaction, stresses, temperature effects, Quadratic Element, Heat transfer problems: One-dimensional, conduction and convection problems. Examples: - one dimensional fin, UNIT - III Lecture Hrs: 09 Trusses: Element matrices, assembling of global stiffness matrix, solution for displacements, reaction, stresses, temperature effects. Lecture Hrs: 09 Reams and Frames: Element matrices, assembling of global stiffness matrix, solution for displacements, reaction, stresses. Lecture Hrs: 09 UNIT - IV Lecture Hrs: 09 Two dimensional problems: CST, LST, four noded and eight noded rectangular elements, Lagrange basis for triangles and rectangles, serendipity interpolation functions. Axisymmetric Problems: Conduction and convection, examples: - two-dimensional fin. Isoparametric formulation: Concepts, sub parametric, super parametric elements, numerical integration. Lecture Hrs: 09 UNIT - V Lecture Hrs: 09 Finite elements in Structural Dynamics: Dynamic equations, eigen value problems, and their solution methods, simple problems. Convergence: Requirements for convergence, h-refinement and p-refinement, complete and incomplete interpolation functions, pascal's triangle.	forms, Galerkin ar conditions.	nd weighted residual methods, calculus of variations, Essential ar	nd na	tural	boun	dary
assembling of global stiffness matrix, Application of boundary conditions, Elimination and penalty approaches, solution for displacements, reaction, stresses, temperature effects, Quadratic Element, Heat transfer problems: One-dimensional, conduction and convection problems. Examples: - one dimensional fin, UNIT - III Lecture Hrs: 09 Trusses: Element matrices, assembling of global stiffness matrix, solution for displacements, reaction, stresses, temperature effects. Beams and Frames: Element matrices, assembling of global stiffness matrix, solution for displacements, reaction, stresses. UNIT - IV Lecture Hrs: 09 Two dimensional problems: CST, LST, four noded and eight nodded rectangular elements, Lagrange basis for triangles and rectangles, serendipity interpolation functions. Axisymmetric Problems: Conduction and convection, examples: - two-dimensional fin. Isoparametric formulation: Concepts, sub parametric, super parametric elements, numerical integration. UNIT - V Lecture Hrs: 09 Finite elements in Structural Dynamics: Dynamic equations, eigen value problems, and their solution methods, simple problems.						
UNIT - III Lecture Hrs: 09 Trusses: Element matrices, assembling of global stiffness matrix, solution for displacements, reaction, stresses, temperature effects. Beams and Frames: Element matrices, assembling of global stiffness matrix, solution for displacements, reaction, stresses. UNIT - IV Lecture Hrs: 09 Two dimensional problems: CST, LST, four noded and eight nodded rectangular elements, Lagrange basis for triangles and rectangles, serendipity interpolation functions. Axisymmetric Problems: Axisymmetric formulations, Element matrices, boundary conditions. Heat Transfer problems: Conduction and convection, examples: - two-dimensional fin. Isoparametric formulation: Concepts, sub parametric, super parametric elements, numerical integration. Lecture Hrs: 09 Finite elements in Structural Dynamics: Dynamic equations, eigen value problems, and their solution methods, simple problems. Convergence: Requirements for convergence, h-refinement and p-refinement, complete and incomplete interpolation functions, pascal's triangle.	assembling of glob approaches, soluti	bal stiffness matrix, Application of boundary conditions, Elimin on for displacements, reaction, stresses, temperature effects, Q	ation uadr	and atic 1	l pen Elem	alty ent,
reaction, stresses, temperature effects. Beams and Frames: Element matrices, assembling of global stiffness matrix, solution for displacements, reaction, stresses. UNIT - IV Lecture Hrs: 09 Two dimensional problems: CST, LST, four noded and eight nodded rectangular elements, Lagrange basis for triangles and rectangles, serendipity interpolation functions. Axisymmetric Problems: Axisymmetric formulations, Element matrices, boundary conditions. Heat Transfer problems: Conduction and convection, examples: - two-dimensional fin. Isoparametric formulation: Concepts, sub parametric, super parametric elements, numerical integration. UNIT - V Lecture Hrs: 09 Finite elements in Structural Dynamics: Dynamic equations, eigen value problems, and their solution methods, simple problems. Convergence: Requirements for convergence, h-refinement and p-refinement, complete and incomplete interpolation functions, pascal's triangle.	UNIT - III		Lect	ure H	Irs: 0	9
displacements, reaction, stresses. Lecture Hrs: 09 Two dimensional problems: CST, LST, four noded and eight nodded rectangular elements, Lagrange basis for triangles and rectangles, serendipity interpolation functions. Axisymmetric Problems: Axisymmetric formulations, Element matrices, boundary conditions. Heat Transfer problems: Conduction and convection, examples: - two-dimensional fin. Isoparametric formulation: Concepts, sub parametric, super parametric elements, numerical integration. UNIT - V Lecture Hrs: 09 Finite elements in Structural Dynamics: Dynamic equations, eigen value problems, and their solution methods, simple problems. Convergence: Requirements for convergence, h-refinement and p-refinement, complete and incomplete interpolation functions, pascal's triangle.	reaction, stresses,	temperature effects.		•		
Two dimensional problems: CST, LST, four noded and eight nodded rectangular elements, Lagrange basis for triangles and rectangles, serendipity interpolation functions. Axisymmetric Problems: Axisymmetric formulations, Element matrices, boundary conditions. Heat Transfer problems: Conduction and convection, examples: - two-dimensional fin.Isoparametric formulation: Concepts, sub parametric, super parametric elements, numerical integration.UNIT - VFinite elements in Structural Dynamics: Dynamic equations, eigen value problems, and their solution methods, simple problems.Convergence: Requirements for convergence, h-refinement and p-refinement, complete and incomplete interpolation functions, pascal's triangle.	displacements, rea		rix,	solu	tion	for
Lagrange basis for triangles and rectangles, serendipity interpolation functions. Axisymmetric Problems: Axisymmetric formulations, Element matrices, boundary conditions. Heat Transfer problems: Conduction and convection, examples: - two-dimensional fin. Isoparametric formulation: Concepts, sub parametric, super parametric elements, numerical integration. UNIT - V Finite elements in Structural Dynamics: Dynamic equations, eigen value problems, and their solution methods, simple problems. Convergence: Requirements for convergence, h-refinement and p-refinement, complete and incomplete interpolation functions, pascal's triangle.						
UNIT - V Lecture Hrs: 09 Finite elements in Structural Dynamics: Dynamic equations, eigen value problems, and their solution methods, simple problems. Convergence: Requirements for convergence, h-refinement and p-refinement, complete and incomplete interpolation functions, pascal's triangle.	Lagrange basis f Problems: Axisyn problems: Conduc Isoparametric for	or triangles and rectangles, serendipity interpolation function nmetric formulations, Element matrices, boundary condition tion and convection, examples: - two-dimensional fin.	ns. A is. H	Axisy leat	mme Tran	tric sfer
Finite elements in Structural Dynamics: Dynamic equations, eigen value problems, and their solution methods, simple problems. Convergence: Requirements for convergence, h-refinement and p-refinement, complete and incomplete interpolation functions, pascal's triangle.		1	Leat	me I	[max 0	0
solution methods, simple problems. Convergence: Requirements for convergence, h-refinement and p-refinement, complete and incomplete interpolation functions, pascal's triangle.						
incomplete interpolation functions, pascal's triangle.	solution methods,	simple problems.				
			it, c	ompl	ete a	and

M.TECH. IN MACHINE DESIGN COURSE STRUCTURE & SYLLABI

- 1. Introduction to Finite element methods by Chandraputla & Ashok D.Belagondu by Pearson 2012 A
- 2. Concepts and Applications of Finite Element Analysis By Robert D. Cook, David S. Malkus, Michael E. Plesha, Robert J. Witt

Reference Books:

- 1. Finite element method in Heat transfer and fluid dynamics, J.N.Reddy, CRC press, 1994
- 2. Finite Element Method, Zienckiwicz O.C. & R. L. Taylor, McGraw-Hill, 1983.
- 3. Finite Element of Nonlinear continua, . J. N. Oden, McGraw-Hill, New York, 1971.
- 4. Finite element procedures, K. J. Bathe, Prentice-Hall, 1996.

Online Learning Resources:

- https://nptel.ac.in/courses/112/104/112104193/
- https://nptel.ac.in/courses/112/104/112104205/
- https://nptel.ac.in/courses/105/105/105105041/
- https://nptel.ac.in/courses/112/106/112106130/
- https://nptel.ac.in/courses/112/103/112103295/

Course Code	ADVANCED MECHANISMS	L	Т	Р	С
21D15101a	Program Elective Course - I	3	0	0	3
 	Seme	ster	1	I	
Course Objectives:					
• To develop s	tudent understanding of the theoretical backgr	ound for bas	ic and ad	vanced	
	nd synthesis of mechanisms to achieve desired				
	students to basic and advanced computer-bas	ed tools for a	analysis a	ind syntesis	of
mechanisms.					
	n opportunity for students to use theory and ap	plication too	ols throug	gh a majo	or
	esign project.				
	tudent ability to communicate understanding	of the subjec	t through	professi	ional
	orts and oral presentations.				
,	CO): Student will be able to				
	ced topics in kinematics with a focus of mech			nques.	
	nechanism, but will also treat spherical and s	^			
	iety of sources including class notes, texts, an				
	view of kinematics fundamentals, classificat				
	sis techniques, and analytical synthesis techn				
	n, M&K circles, Burmester curves, Chebych				
	tibed positions, and multi-loop synthesis				spatial
	tial transformations, and spatial dyad synthesi				
	ounts of team interaction through active lear	÷			
	which will implement the key topics pre	sented in c	lass thro	ough pr	actical
applications.					
UNIT - I		Lecture Hrs:			
	nts of Mechanisms; Mobility Criterion for Pl				
-	for spatial mechanisms and manipulators.	Spherical	mechanis	sms- spl	herical
trigonometry.					
	e motion- I: The Inflection circle ; Euler				
	on of di ; Bobillier's Construction ;Collinea				
	the relative motion of two moving planes; A	Application of	of the Inf	lection	circle to
kinematic analysis.					
UNIT - II		Lecture Hrs:			
	motion - II: Polode curvature; Hall's Equat				
	motion; relative motion of the output and inp				
	and its Rate of change; Freudenstein's collir		theorem	; Carter	–Hall
	point curve for the Coupler of a four bar mec				
UNIT - III		Lecture Hrs:		.1	1 75
-	thesis-Graphical Methods: The Four bar lin	•	•	•	
	iding a body through Three distinct positions	; The Rotoce	enter tria	ngle ; G	uiding
	distinct positions; Burmester's curve.				- (l 1
	- General discussion; Function generation				
÷	Function generation- Velocity – pole metho	ou; Path ger	ieration:	Hrones	s and
	s, Roberts's theorem.	Looture II	00		
UNIT - IV		Lecture Hrs:	09		

eoek	SE STRUCTURE & STELADI
Introduction to Synthesis - Analytic	cal Methods: Function Generation: Freudenstien's equation,
Precision point approximation, Precision	on – derivative approximation; Path Generation: Synthesis of
Four-bar Mechanisms for specified ins	stantaneous condition; Method of components; Synthesis of
Four-bar Mechanisms for prescribed ex	treme values of the angular velocity of driven link; Method of
components.	
UNIT - V	Lecture Hrs: 09
Manipulator kinematics: D-H notation	on, D-H convention of assignment of co-ordinate frames and
link parameters table; D-H transformat	tion matrix ; Direct and Inverse kinematic analysis of Serial
manipulators: Articulated ,spherical &	industrial robot manipulators- PUMA, SCARA, STANFORD
ARM, MICROBOT.	•
Differential kinematics Formulation	of Jacobian for planar serial manipulators and spherical
manipulator; Singularity analysis.	
Textbooks:	
1. Jeremy Hirschhorn, Kinematics and D	Dynamics of plane mechanisms, McGraw-Hill, 1962.
2. L.Sciavicco and B.Siciliano, Mode	lling and control of Robot manipulators, Second edition, Springer
– Verlag ,London 2000.	
÷	ar Mallik, Theory of Mechanisms and Machines. E.W.P.
Publishers.	
Reference Books:	
1. x	
Online Learning Resources:	
	d/Lecture%20Notes/ME101-Lecture31-KD.pdf
— — — — — — — — — — — — — — — — — — — —	om/watch?v=4LsLy9iJKFA
· · ·	ton.ca/John_Hayes/5507Notes/Ch1JH.pdf
	om/watch?v=r8noZ110ZSY
· · ·	pm/watch?v=X7iBT51599c
· · ·	laltricionid/oppointo/material/AAD0040/02 Debatics adf

- http://www.ene.ttu.ee/elektriajamid/oppeinfo/materjal/AAR0040/02_Robotics.pdf
 - https://faraday.emu.edu.tr/eeng428/lecture_notes.htm

Course Code	COMPUTER APPLICATIONS IN DESIGN	L	Т	Р	С
21D15101b	Program Elective Course - I	3	0	0	3
	Semester			I	
Course Objective	S:				
To impa	rt knowledge on computer graphics which are used routinely in	n div	verse	area	s as
science,	engineering, medicine, etc.				
Course Outcomes	s (CO): Student will be able to				
	poratory classes in conjunction, It helps the students to get fan r graphics application in design.	niliar	ized	with	the
•			11	1	
	unding reinforces the knowledge being learned and shortens the		erall	lear	nıng
curves w	hich are necessary to solve CAEproblems that arise in engineering	g.			
UNIT - I		Lec	ture	Hrs:()9
INTRODUCTI	ON TO COMPUTER GRAPHICS FUNDAMENTALS				
Output primitives	(points, lines, curves etc.,), 2-D & 3-D transformation (Translation	n,sca	ling,	rotat	ors)
windowing - view	ports - clipping transformation.		-		
UNIT - II		Lec	ture	Hrs:	09
CURVES AND S	URFACES MODELLING				
Introduction to cu	rves - Analytical curves: line, circle and conics - synthetic curv	es:H	lermi	te cu	bic
spline- Bezier curv	e and B-Spline curve – curve manipulations.				
Introduction to su	faces - Analytical surfaces: Plane surface, ruled surface, surface	of re	volu	tion	and
	– synthetic surfaces: Hermite bicubic surface- Beziersurface and				
surface manipulati	•	DDF	mic	Surra	
*					
UNIT - III		Lec	ture	Hrs:	09
NURBS AND SO					07
	LID MODELING				
NURBS- Basics-	curves, lines, arcs, circle and bi linear surface. Regularized Boole		etop		ons -
NURBS- Basics- of primitive instancir	curves , lines, arcs, circle and bi linear surface. Regularized Boole ag - sweep representations - boundary representations - constructiv		etop		ons -
NURBS- Basics- of primitive instancir - comparison of re	curves, lines, arcs, circle and bi linear surface. Regularized Boole	ve so	etopo olid C	Geom	ons - etry
NURBS- Basics- o primitive instancir - comparison of re UNIT - IV	curves , lines, arcs, circle and bi linear surface. Regularized Boole ag - sweep representations - boundary representations - constructive presentations - user interface for solid modeling.	ve so	etopo olid C		ons - etry
NURBS- Basics- o primitive instancir - comparison of re UNIT - IV VISUAL REALIS	curves , lines, arcs, circle and bi linear surface. Regularized Boole ag - sweep representations - boundary representations - constructive presentations - user interface for solid modeling. SM	ve so Lec	etopo olid C ture	Geom Hrs:	ons - etry 09
NURBS- Basics- o primitive instancin - comparison of re UNIT - IV VISUAL REALIS Hidden – Line – S	curves , lines, arcs, circle and bi linear surface. Regularized Boole g - sweep representations - boundary representations - construction presentations - user interface for solid modeling. SM urface – solid removal algorithms shading – coloring. Introduction	ve so Lec n top	etopo olid C ture aram	Beom Hrs:	ons - etry 09 and
NURBS- Basics- o primitive instancir - comparison of re UNIT - IV VISUAL REALIS Hidden – Line – S variational geomet	curves , lines, arcs, circle and bi linear surface. Regularized Boole ag - sweep representations - boundary representations - constructive presentations - user interface for solid modeling. SM	ve so Lec n top	etopo olid C ture aram	Beom Hrs:	ons - etry 09 and
NURBS- Basics- of primitive instancing - comparison of re UNIT - IV VISUAL REALLS Hidden – Line – S variational geometry these packages.	curves , lines, arcs, circle and bi linear surface. Regularized Boole g - sweep representations - boundary representations - construction presentations - user interface for solid modeling. SM urface – solid removal algorithms shading – coloring. Introduction	ve so Lec n top loft	etopo blid C ture aram ed pa	Geom Hrs: hetric hetric urts u	ons - etry 09 and sing
NURBS- Basics- o primitive instancin - comparison of re UNIT - IV VISUAL REALIS Hidden – Line – S variational geomet these packages. UNIT - V	curves , lines, arcs, circle and bi linear surface. Regularized Boole ag - sweep representations - boundary representations - construction presentations - user interface for solid modeling. SM urface – solid removal algorithms shading – coloring. Introduction ry based software's and their principles creation of prismatic and	ve so Lec n top loft	etopo blid C ture aram ed pa	Beom Hrs:	ons - etry 09 and sing
NURBS- Basics- o primitive instancin - comparison of re UNIT - IV VISUAL REALIS Hidden – Line – S variational geomet these packages. UNIT - V ASSEMBLY OF	curves , lines, arcs, circle and bi linear surface. Regularized Boole ag - sweep representations - boundary representations - construction presentations - user interface for solid modeling. SM urface – solid removal algorithms shading – coloring. Introduction ry based software's and their principles creation of prismatic and PARTS AND PRODUCT DATA EXCHANGE	ve so Lec n top loft Lec	etopo olid C ture aram ed pa ture	Beom Hrs: hetric hetric urts u Hrs:	ons - etry 09 and sing 09
NURBS- Basics- o primitive instancin - comparison of re UNIT - IV VISUAL REALIS Hidden – Line – S variational geomet these packages. UNIT - V ASSEMBLY OF Assembly modelin	curves , lines, arcs, circle and bi linear surface. Regularized Boole ag - sweep representations - boundary representations - construction presentations - user interface for solid modeling. SM urface – solid removal algorithms shading – coloring. Introduction ry based software's and their principles creation of prismatic and PARTS AND PRODUCT DATA EXCHANGE ng - interferences of positions and orientation - tolerances analysis	ve so Lec n top loft Lec is - 1	etopo olid C ture aram ed pa ture mass	Geom Hrs: hetric hrts u Hrs: prop	ons - etry 09 and sing 09 erty
NURBS- Basics- o primitive instancin - comparison of re UNIT - IV VISUAL REALIS Hidden – Line – S variational geomet these packages. UNIT - V ASSEMBLY OF Assembly modelin calculations - met	curves , lines, arcs, circle and bi linear surface. Regularized Boole ag - sweep representations - boundary representations - construction presentations - user interface for solid modeling. SM urface – solid removal algorithms shading – coloring. Introduction ry based software's and their principles creation of prismatic and PARTS AND PRODUCT DATA EXCHANGE ng - interferences of positions and orientation - tolerances analysis chanism simulation. Graphics and computing standards–Open G	ve so Lec n top loft Lec is - 1	etopo olid C ture aram ed pa ture mass	Geom Hrs: hetric hrts u Hrs: prop	ons - etry 09 and sing 09 erty
NURBS- Basics- o primitive instancin - comparison of re UNIT - IV VISUAL REALIS Hidden – Line – S variational geomet these packages. UNIT - V ASSEMBLY OF Assembly modelin calculations - med standards – IGES,	curves , lines, arcs, circle and bi linear surface. Regularized Boole ag - sweep representations - boundary representations - construction presentations - user interface for solid modeling. SM urface – solid removal algorithms shading – coloring. Introduction ry based software's and their principles creation of prismatic and PARTS AND PRODUCT DATA EXCHANGE ng - interferences of positions and orientation - tolerances analysis	ve so Lec n top loft Lec is - 1	etopo olid C ture aram ed pa ture mass	Geom Hrs: hetric hrts u Hrs: prop	ons - etry 09 and sing 09 erty
NURBS- Basics- o primitive instancin - comparison of re UNIT - IV VISUAL REALIS Hidden – Line – S variational geomet these packages. UNIT - V ASSEMBLY OF Assembly modelin calculations - med standards – IGES, Textbooks:	curves , lines, arcs, circle and bi linear surface. Regularized Boole ag - sweep representations - boundary representations - construction presentations - user interface for solid modeling. SM urface – solid removal algorithms shading – coloring. Introduction ry based software's and their principles creation of prismatic and PARTS AND PRODUCT DATA EXCHANGE ag - interferences of positions and orientation - tolerances analysis chanism simulation. Graphics and computing standards–Open G STEP etc– Communication standards.	Lec n top loft Lec is - 1 L D	etopo lid C ture aram ed pa ture mass ata I	Geom Hrs: hetric hrts u Hrs: prop	ons - etry 09 and sing 09 erty
NURBS- Basics- o primitive instancin - comparison of re UNIT - IV VISUAL REALIS Hidden – Line – S variational geomet these packages. UNIT - V ASSEMBLY OF Assembly modelin calculations - med standards – IGES, Textbooks: 1. William M	curves , lines, arcs, circle and bi linear surface. Regularized Boole og - sweep representations - boundary representations - construction presentations - user interface for solid modeling. SM urface – solid removal algorithms shading – coloring. Introduction ry based software's and their principles creation of prismatic and PARTS AND PRODUCT DATA EXCHANGE ng - interferences of positions and orientation - tolerances analyst chanism simulation. Graphics and computing standards–Open G STEP etc– Communication standards. I Neumann and Robert F. Sproul "Principles of Computer Graphic	Lec n top loft Lec is - 1 L D	etopo lid C ture aram ed pa ture mass ata I	Geom Hrs: hetric hrts u Hrs: prop	ons - etry 09 and sing 09 erty
NURBS- Basics- o primitive instancin - comparison of re UNIT - IV VISUAL REALIN Hidden – Line – S variational geomet these packages. UNIT - V ASSEMBLY OF Assembly modelin calculations - med standards – IGES, Textbooks: 1. William M Graw Hill	curves , lines, arcs, circle and bi linear surface. Regularized Boole ag - sweep representations - boundary representations - construction presentations - user interface for solid modeling. SM urface – solid removal algorithms shading – coloring. Introduction ry based software's and their principles creation of prismatic and PARTS AND PRODUCT DATA EXCHANGE ag - interferences of positions and orientation - tolerances analyst chanism simulation. Graphics and computing standards–Open G STEP etc– Communication standards. I Neumann and Robert F. Sproul "Principles of Computer Graphic Book Co. Singapore, 1989.	ve so Lec n topp loft Lec is - 1 L D s", N	etopolid C ture aram ed pa ture mass ata I	Geom Hrs: hetric hrts u Hrs: prop	ons - etry 09 and sing 09 erty
NURBS- Basics- o primitive instancin - comparison of re UNIT - IV VISUAL REALIS Hidden – Line – S variational geomet these packages. UNIT - V ASSEMBLY OF Assembly modelin calculations - med standards – IGES, Textbooks: 1. William M Graw Hill 2. Donald He	curves , lines, arcs, circle and bi linear surface. Regularized Boole ag - sweep representations - boundary representations - construction presentations - user interface for solid modeling. SM urface – solid removal algorithms shading – coloring. Introduction ry based software's and their principles creation of prismatic and PARTS AND PRODUCT DATA EXCHANGE ng - interferences of positions and orientation - tolerances analysis chanism simulation. Graphics and computing standards–Open G STEP etc– Communication standards. I Neumann and Robert F. Sproul "Principles of Computer Graphic Book Co. Singapore, 1989. earn and M. Pauline Baker "Computer Graphics", Prentice Hall, In	ve so Lec n topp loft Lec is - 1 L D s", N	etopolid C ture aram ed pa ture mass ata I	Geom Hrs: hetric hrts u Hrs: prop	ons - etry 09 and sing 09 erty
NURBS- Basics- o primitive instancin - comparison of re UNIT - IV VISUAL REALIS Hidden – Line – S variational geomet these packages. UNIT - V ASSEMBLY OF Assembly modelin calculations - med standards – IGES, Textbooks: 1. William M Graw Hill 2. Donald He 3. Geometric	 curves , lines, arcs, circle and bi linear surface. Regularized Boole ag - sweep representations - boundary representations - constructive presentations - user interface for solid modeling. SM urface – solid removal algorithms shading – coloring. Introduction ry based software's and their principles creation of prismatic and PARTS AND PRODUCT DATA EXCHANGE ag - interferences of positions and orientation - tolerances analyst chanism simulation. Graphics and computing standards–Open G STEP etc– Communication standards. I Neumann and Robert F. Sproul "Principles of Computer Graphic Book Co. Singapore, 1989. earn and M. Pauline Baker "Computer Graphics", Prentice Hall, In Modeling by Michael E. Mortenson 	ve so Lec n topp loft Lec is - 1 L D s", N	etopolid C ture aram ed pa ture mass ata I	Geom Hrs: hetric hrts u Hrs: prop	ons - etry 09 and sing 09 erty
NURBS- Basics- o primitive instancin - comparison of re UNIT - IV VISUAL REALIS Hidden – Line – S variational geomet these packages. UNIT - V ASSEMBLY OF Assembly modelin calculations - med standards – IGES, Textbooks: 1. William M Graw Hill 2. Donald He 3. Geometric Reference Books:	 curves , lines, arcs, circle and bi linear surface. Regularized Boole ag - sweep representations - boundary representations - constructive presentations - user interface for solid modeling. SM urface – solid removal algorithms shading – coloring. Introduction ry based software's and their principles creation of prismatic and PARTS AND PRODUCT DATA EXCHANGE ag - interferences of positions and orientation - tolerances analyst chanism simulation. Graphics and computing standards–Open G STEP etc– Communication standards. I Neumann and Robert F. Sproul "Principles of Computer Graphic Book Co. Singapore, 1989. earn and M. Pauline Baker "Computer Graphics", Prentice Hall, In Modeling by Michael E. Mortenson 	ve so Lec n top loft Lec is - 1 L D s", N c., 1	etopo lid C ture aram ed pa ture mass ata I Ac 992	Geom Hrs: hetric hrts u Hrs: prop	ons - etry 09 and sing 09 erty

M.TECH. IN MACHINE DESIGN COURSE STRUCTURE & SYLLABI

- 2. Foley, Wan Dam, Feiner and Hughes Computer graphics principles & practices, Pearson Education 2003.
- 3. David F. Rogers, James Alan Adams "Mathematical elements for computer graphics" second edition, Tata McGraw-Hill edition.

Online Learning Resources:

- https://www.coursehero.com/file/95927477/Computer-applications-in-Design-Full-Notes.pdf/
- https://vssut.ac.in/lecture_notes/lecture1530947994.pdf
- https://www.iare.ac.in/sites/default/files/ACAD%20lecture%20Notes.pdf
- https://en.wikipedia.org/wiki/CAD_data_exchange
- https://www.youtube.com/watch?v=m9U_XmnHQMU
- https://www.youtube.com/watch?v=0h2M-1BuR1E
- https://en.wikipedia.org/wiki/Solid_Modeling_Solutions

Course Code	MATERIAL STECHNOLOGY	т	T	D	C
Course Code	MATERIALS TECHNOLOGY		T	P	C
21D15101c	Program Elective Course - I	3	0	0	3
	Semester				
Course Objectiv					
• The stud	lent should be able to understand and classify the sub branch	es and	l doma	ins of	
Material	s & Metallurgical Engineeringstream.				
• The stud	dent should be able to analyze the possible opportunities in	the c	lomair	s of	
	s & Metallurgical Engineering.				
	ent should be able to understand all basic principles involve	d in	the the	orvof	
	y and Plasticity	G 111		01 9 01	
	es (CO): Student will be able to				
		ool En	aincor	na on	tha
	and and create the areas and domains in Materials & Metallurgic		•	ing on	the
	his/her interest and opportunity available in present industrial sc				
	dent will be able to understand the basic principles of sel	ection	of m	aterial	S
	lenges to entrepreneurs in metallurgy				
UNIT - I			are Hrs		
	tals and polymers: Mechanism of plastic deformation, role of d				
	f perfect and real crystals, strengthening mechanism, work ha	rdenii	ng, sol	id solu	tion,
grain boundary s	trengthening.	_			
UNIT - II			are Hrs		
• •	ture, precipitation: particle, fiber and dispersion strengthenin	-		-	ature,
	rate on plastic behavior, super plasticity, deformation of noncrys				
	election, cost basis and service requirements, selection for me	chani	cal pro	pertie	s,
strength, toughne	ess, fatigue and creep.				
UNIT - III		Lectu	are Hrs	s: 09	
Modern metalli	c Materials: Dual phase steels, micro alloyed, high strength low	alloy	(HSL	A)Stee	el,
transformation in	nduced plasticity (TRIP) Steel, maraging steel, intermetalics, Ni	and T	i alumi	nides	
UNIT - IV		Lectu	are Hrs	s: 09	
Smart materials	s: shape memory alloys, metallic glass, quasi crystal and nano cr	ystall	inemat	erials.	
	terials: Polymeric materials and their molecular structures, prod				
fibers, foams, ad	hesives and coatings, structure, properties and applications of en	ginee	ing po	lymer	S
UNIT - V			are Hrs		
Advanced struc	tural ceramics: WC, TiC, TaC, Al2O3, SiC, Si3 N4, CBN a	nd dia	amond	- prope	erties.
processing and a				1 1	,
	ral composites; Introduction, reinforcement, types of composite	mate	rials	prope	rties.
	pplication, and mechanics of composite materials.		,	r ·r·	,
Textbooks:					
	nical behavior of materials/Thomas H. Courtney/2nd Edition, Mc	Graw	-Hill	2000	
	nical Metallurgy/George E. Dieter/McGraw Hill, 1998	oran	, -		
Reference Book					
I. Selectio	on and use of Engineering Materials 3e/Charles J.A/Butterworth	Heire	nann.		
Online Learnin	g Resources:				
	c.in/courses/112/108/112108150/				
	w.mit.edu/courses/materials-science-and-engineering/3-012-fund	lamen	tals-of	-mate	rials-
science-fall-2005					
	sut.ac.in/lecture-notes.php?url=metallurgical-materials-engineer	ing			
	searchgate.net/publication/305356293_Advanced_metallic_mat		and p	rocess	es
	outube.com/watch?v=yXHIIowQntk		r		
1					

M.TECH. IN MACHINE DESIGN COURSE STRUCTURE & SYLLABI

6.https://nptel.ac.in/courses/112/104/112104251/ 7.https://www.youtube.com/watch?v=b5IPJeCDEPw 8.https://nptel.ac.in/courses/112/108/112108092/

M.TECH. IN MACHINE DESIGN COURSE STRUCTURE & SYLLABI

Course Code	ADVANCED MECHANICS OF SOLIDS	L	Т	P	С
21D15102a	Program Elective Course – II	3	0	0	3
	Semester			I	
		1			
	s: Students would be able to				
	he concept of "stress at a point" (state of stress and strain in 3D)				
•	he transformation of stress and strain in 3D including the utilization		•		
	knowledge to design the mechanical structures in the view point on nation including the design by means of numerical simulation.	of bo	th st	rengtl	1
Course Outcome	s (CO): Student will be able to				
Theories of Generalize Continuur	ntal Concept, Introduction to Cartesian Tensors, Two and Three De of Stress and Strain (Method of Continuum Mechanics, Theory of ed Hooke's Law (Linear Stress-Strain-Temperature), Energy Prince n, Application of Energy Methods, Inelastic Material Behavior, Theory of Energy Methods, Inelastic Material Behavior, Theory of Elasticity	Elas cipal	ticity in S	7), olid	ure,
UNIT - I	In or Endsterky	Leo	ture	Hrs:()9
Shear center: Be sections	ending axis and shear center- shear center for axi-symmetric an	d un	sym	metrio	cal
	bending: Bending stresses in Beams subjected to Non symmetrical hearding	netrio	cal b	oendir	ıg;
UNIT - II	ght beams due to non symmetrical bending.	Ιa	tura	Hrs:	00
	eory: Winkler Bach formula for circumferential stress – Limitati				
factors –Radial st stresses in chain li Torsion : Linea	ress in curved beams – closed ring subjected to concentrated an nks. r elastic solution; Prandtl elastic membrane (Soap-Film) A	d un Inalo	iforn gy;	n load Narre	ds-
	Section ;Hollow thin wall torsion members ,Multiply connected Cr				00
UNIT - III	Introduction; problem of determining contact stresses; Assumption			Hrs:	
solution for conta contact stresses; D rectangular area	act stresses is based; Expressions for principal stresses; Metho peflection of bodies in point contact; Stresses for two bodies in cor (Line contact), Loads normal to area; Stresses for two bodies ent to contact area.	od of ntact	f coi over	nputi narro	ng ow
UNIT - IV		Leo	cture	Hrs:	09
	l Elasticity Problems: Plane stress & Plain strain-Problems in				
ordinates, bending General equations	of cantilever loaded at the end, bending of a beam by uniform loa in polar coordinates, stress distribution symmetrical about an ax placements for symmetrical stress distributions, rotating discs.	ıd.	Ū		
UNIT - V	placements for symmetrical stress distributions, folding dises.	Leo	ture	Hrs:	09
	Three Dimensional Problems: Uniform stress stretching of a pri				
	of circular shafts of constant cross section, pure bending of plates.				,
Textbooks:					
	chanics of materials by Boresi & Sidebottom-Wiely International. sticity by Timoschenko S.P. and Goodier J.N. McGraw-Hill Publis	shers	3/e		
Reference Books	· ·				
1. Advanced stre	ength of materials by Den Hortog J.P. tes – Timoshenko.				

3. Strength of materials & Theory of structures (Vol I & II) by B.C Punmia

M.TECH. IN MACHINE DESIGN COURSE STRUCTURE & SYLLABI

4. Strength of materials by Sadhu singh

Online Learning Resources:

1.http://www.facweb.iitkgp.ac.in/~jeevanjyoti/teaching/advmechsolids/2019/

2.https://nptel.ac.in/courses/112/101/112101095/

3.https://www.youtube.com/watch?v=4meZNc2wB4s

4.https://www.youtube.com/watch?v=89bKgHmRQbw

5.https://slideplayer.com/slide/5016902/

Course Code	TRIBOLOGY IN DESIGN	L	Т	Р	C	
21D15102b	Program Elective Course – II	3	0	0	3	
	Semester			Ι		
Course Objective						
Majority of mechanical equipment / mechanisms involve relativemotion of links or parts.						
The cours	e intends to impart concepts of friction, wear and lubrication and a	appli	catio	n of		
tribology	in design of mechanical components is also introduce					
Course Outcome	s (CO): Student will be able to					
Understar	dthe fundamentals of tribology and associated parameters.					
 Apply cor 	ncepts of tribology for the performance analysis and design of com	pone	ents			
experienc	ing relative motion.	_				
UNIT – I		Leo	cture	Hrs:	09	
Introduction: Na	ture of surfaces and contact-Surface topography-friction and wea	r me	chan	isms	and	
effect of lubricant	s- methods of fluid film formation.					
Selection of rolli	ng element bearings: Nominal life, static and dynamic capacit	y-Eq	uival	lent 1	oad,	
probabilities of s	survival- cubic mean load- bearing mounting details, pre loa	ding	of	beari	ngs,	
conditioning monit	itoring using shock pulse method.					
UNIT – II		Leo	cture	Hrs:	09	
Hydrodynamic b	pearings: Fundamentals of fluid formation - Reynold's equation	on; I	Hydro	odyna	imic	
journal bearings -	Sommerfield number- performance parameters - optimum beari	ng v	vith r	naxir	num	
load capacity -	Friction - Heat generated and Heat dissipated. Hydrodynami	c th	rust	beari	ngs;	
Raimondi and Bo	yd solution for hydrodynamic thrust bearings- fixed tilting pads,	singl	eand	. mult	tiple	
pad bearings-optim	num condition with largest minimum film thickness.					
UNIT – III				Hrs:		
-	rings: Thrust bearings - pad coefficients- restriction- optimum					
	- design procedure -Aerostatic bearings; Thrust bearings and Je	ourn	al be	aring	s –	
design procedure.						
	rings: porous metal bearings and oscillatory journal bearings - qu	ialita	itivea	ippro	ach	
only.						
UNIT – IV				Hrs:		
	ice of lubricants, types of oil, Grease and solid lubricants- additive			ation		
	selection – selection of pump, filters, piping design- oil changing a	and o	oil			
conservation.						
UNIT – V				Hrs:	09	
	pe-mechanical seals, lip seals, packed glands, soft piston seals, l					
	g, labyrinth seals and throttling bushes, oil flinger rings and drair	n gro	oves	—		
selection of mecha						
	logical components: Failure analysis of plain bearings, rolling b	beari	ngs,	gears	and	
	is using soap and Ferrography.					
Textbooks:						
	W& O' Dionoghue,"Hydrostatic and Hybrid bearing design "But	terw	orths	. &		
	ishers Ltd, 1983.					
	tt R.A," Mechanical Fault diagnosis and condition monitoring", Cl	hapn	nan a	nd		
	ondon 1977.	11 ~	101			
	J.Hamrock, "Fundamentals of fluid film lubricant", Mc Graw-Hi	II Co	.,199	94.		
Reference Books						

M.TECH. IN MACHINE DESIGN COURSE STRUCTURE & SYLLABI

- 1. Neale MJ, (Editor) "Tribology hand Book" Neumann Butter worths, 1975.
- 2. Connor and Boyd JJO (Editors) "Standard hand book of lubrication engineers " ASLE, Mc Graw Hill Book & Co., 1968
- 3. Shigley J, E Charles," Mechanical Engineering Design", McGraw Hill Co., 1989

Online Learning Resources:

- https://nptel.ac.in/courses/112/102/112102015/
- https://nptel.ac.in/courses/112/102/112102014/
- https://ocw.mit.edu/courses/mechanical-engineering/2-800-tribology-fall-2004/lecture-notes/
- https://www.notes4free.in/admin/postimages/Tribology-Notes_compressed_watermark.pdf
- https://www.youtube.com/watch?v=SBFSb_Qy6PI
- https://nptel.ac.in/courses/113/108/113108083/
- <u>https://youtu.be/mI8AHUwmrDo</u>

Course Code	GEAR ENGINEERING	L	Т	Р	C
21D15102c	Program Elective Course – II	3	0	0	3
	Semester			[<u> </u>
	Somester		-	-	
Course Objective	s:				
	se introduces all varieties of Circuit Breakers and Relays for prote	ctior	n of		
	s, Transformers and feeder bus bars from over voltages and other h				
	sis on Neutral grounding for overall protection.				
Course Outcomes	s (CO): Student will be able to				
	lifferent gear are necessary to have an idea while designing the sp	pur g	gear,	helic	al
gear, worr	n gear and Optimal Gear design				
UNIT – I	Le	ectur	e Hrs	:09	
	inciples of gear tooth action, Generation of Cycloid and				s,
	ar manufacturing processes and inspection, gear tooth failure i			-	
selection of right l			,		,
Ŭ	th loads, Principles of Geometry, Design considerations and	1 m	ethod	lolog	y,
	of spur gear teeth considering Lewis beam strength, Buckingham				
· · ·	sign of gear shaft and bearings.	2			
UNIT – II		Lee	cture	Hrs:	09
Helical Gears: T	ooth loads, Principles of Geometry, Design considerations and	d m	ethod	olog	v,
	of helical gear teeth considering Lewis beam strength, Bucking				
	d, Design of gear shaft and bearings.	, ,	2		
UNIT – III		Lee	cture	Hrs:	09
Bevel Gears: To	ooth loads, Principles of Geometry, Design considerations a	nd 1	netho	odolo	gy,
	of bevel gear teeth considering Lewis beam strength, Buckinghar				
	sign of gear shaft and bearings.		•		
UNIT – IV		Lee	cture	Hrs:	09
Worm Gears: T	ooth loads, Principles of Geometry, Design considerations and	d m	ethod	lolog	у,
Complete design	of worm gear teeth considering Lewis beam strength, Bucking	ham	's dy	nam	ic
load and wear load	d, Heat dissipation considerations. Design of gear shaft and bearin	gs.			
Gear failures					
	ooth failures, Nomenclature of gear tooth wear and failure, tooth	brea	kage,	, pitti	ng,
	r loading, gear- casing problems, lubrication failures				
UNIT – V			cture		
	ple, compound and epicyclic gear trains, Ray diagrams, Design o		-		of
	sign of gear trains from the propeller shafts of airplanes for auxilia				
	sign: Optimization of gear design parameters, Weight minimizat				
	gn-space, interference, strength, dynamic considerations, rigidit				
	ins, multi objective optimization of gear trains. Application of	Trac	lition	al an	ıd
1	timization techniques				
Textbooks:					
	artman, Machine Design, C.B.S. Publishers, India.				
2. Henry E.Merr	it,Gear engineering,Wheeler publishing,Allahabad,1992.				
3. Practical Gear	design by Darle W. Dudley, McGraw-Hill book company				
Reference Books					
	gn by Robert L. Norton				
	gham, Analytical mechanics of gears, Dover publications, New Yo		949.		
3.G.M. Maitha,	Hand book of gear design, Tata Mc. Graw Hill publishing compan	У			

M.TECH. IN MACHINE DESIGN COURSE STRUCTURE & SYLLABI

Ltd., New Delhi, 1994.

Online Learning Resources:

- https://nptel.ac.in/courses/112/105/112105234/
- https://youtu.be/AS0zQhMfJUw
- https://youtu.be/i9xbJTIGJlE
- https://youtu.be/sTvWp0L8RtI
- https://nptel.ac.in/courses/112/105/112105219/
- https://nptel.ac.in/courses/112/106/112106179/
- https://www.youtube.com/watch?v=maa0LhRK9d4

Course Co		L	T	P	C
21D15103	Semester	0	0	4 T	2
	Semester			1	
Course Obje					
	• Students able to understand the software analysis				
Course Outo					
At the end of	the lab sessions, the student shall be able to:				
• App	bly built-in functions in MATLAB/ SCILAB to solve numerical proble	ems.			
	elop code for solving problems involving different types of mathemat	ical r	node	ls and	l
-	ations (ODE, PDE, Linear and nonlinear equations).				
	ve simulation problems encountered in mechanical design, vibration a	nalys	is and	1 CAI	D
	del a system and Develop a simulation code towards a mini project				
List of Expe	roduction to MATLAB / SCILAB and practice				
	ctice session on handling basic arithmetic elements.				
	·				
	iting codes with control loops, functions and scripts				
4 De	veloping codes for visualization and plotting				
5 Sol	ving problems involving linear and nonlinear equations				
6 Sol	ving problems involving curve fitting and interpolations				
7 Sol	ving problems involving ordinary and partial differential equations				
8 Sol	ving problems related to optimization				
9 Sol	ving problems involving numerical differentiation and integrations				
10 Int	oduction to Simulink				
11 Ca	se studies and working on projects – I				
12 Ca	se studies and working on projects - II				
References:					
	duction to MATLAB & SIMULINK for Engineers by Agam Kumar T ng resources/Virtual labs:	yagi			

Course Code	ADVANCED COMPUTER AIDED DESIGN AND	L	Т	P	С
21D15104	ANALYSIS LABORATORY	0	0	4	2
	Semester			Ι	
Course Objective					
	should be able to understand about MATLAB/ SCILAB				
	should be able to understand different mathematical models				
Course Outcome	should be able to understand vibration analysis and CAD ϵ (CO):				
	ab sessions, the student shall be able to:				
** *	ilt-in functions in MATLAB/ SCILAB to solve numerical problem code for solving problems involving different types of mathemati		o dala	and	
	(ODE, PDE, Linear and nonlinear equations).		lodels	sand	
-	ulation problems encountered in mechanical design, vibration an	alvsis	s and	CAD	
	system and Develop a simulation code towards a mini project	arysn	, and	CILD	
List of Experime					
	MATLAB and practice				
2 Practice sessio	n on handling basic arithmetic etc.				
3 Writing codes	with control loops, functions and scripts				
4 Developing co	des for visualization and plotting				
5 Solving proble	ms involving linear and nonlinear equations				
6 Solving proble	ms involving curve fitting and interpolations				
7 Solving proble	ms involving ordinary and partial differential equations				
8 Solving proble	ms related to optimization				
9 Solving proble	ms involving numerical differentiation and integrations				
10Introduction to	o Simulink				
11 Case studies a	and working on projects				
12 Case studies a	and working on projects				

Course Code	RESEARCH METHODOLOGY AND IPR	L	Т	Р	С
21DRM101		2	0	0	2
	Semester			Ι	
Course Object	1706.				
	<i>i</i> an appropriate research problem in their interesting domain.				
	tand ethical issues understand the Preparation of a research project th	esis r	enort		
	tand the Preparation of a research project thesis report	05151	eport.		
	tand the law of patent and copyrights.				
	tand the Adequate knowledge on IPR				
	nes (CO): Student will be able to				
	e research related information				
-	research ethics				
• Unders	tand that today's world is controlled by Computer, Information	ion 7	Fechno	ology,	but
	by world will be ruled by ideas, concept, and creativity.	in die.	: dura la	0	
	tanding that when IPR would take such important place in growth of edless to emphasis the need of information about Intellectual Property				
	students in general & engineering in particular.	Kigi		prom	Jieu
-	tand that IPR protection provides an incentive to inventors for furth	ner re	search	work	and
	then the R & D, which leads to creation of new and better products, an				
	nic growth and social benefits.				,
UNIT - I	Lecture Hrs:				
Meaning of res	earch problem, Sources of research problem, Criteria Characteristi	cs of	a goo	d resea	arch
	s in selecting a research problem, scope, and objectives of research				
	n of solutions for research problem, data collection, analysis, inte	rpret	ation,	Neces	sary
instrumentation					
UNIT - II	Lecture Hrss				<u> </u>
	ture studies approaches, analysis Plagiarism, Research ethics, Effec				•
	port, Paper Developing a Research Proposal, Format of research pr	oposa	al, a pr	resenta	tion
UNIT - III	by a review committee. Lecture Hrs:				
	llectual Property: Patents, Designs, Trade and Copyright. Proce		f Data	nting	and
	technological research, innovation, patenting, development. In				
	operation on Intellectual Property. Procedure for grants of patents, Pa				
UNIT - IV	Lecture Hrs:				
	Scope of Patent Rights. Licensing and transfer of technology. Pa		inform	nation	and
÷	graphical Indications.				
UNIT - V					
New Developr	nents in IPR: Administration of Patent System. New developm	ents	in IPI	R; IPF	of
Biological Syst	ems, Computer Software etc. Traditional knowledge Case Studies, IP	R and	l IITs.		
Textbooks:					
	rt Melville and Wayne Goddard, "Research methodology: an intro-	ductio	on for	scienc	e &
e	ring students'"				
	ne Goddard and Stuart Melville, "Research Methodology: An Introdu	ction	77		
Reference Boo		.1 .			
	njit Kumar, 2nd Edition, "Research Methodology: A Step by Step Gu	ide fo	or		
beg	inners"				

- 2. Halbert, "Resisting Intellectual Property", Taylor & amp; Francis Ltd ,2007.
- 3. Mayall, "Industrial Design", McGraw Hill, 1992.
- 4. Niebel, "Product Design", McGraw Hill, 1974.
- 5. Asimov, "Introduction to Design", Prentice Hall, 1962.
- 6. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.

Course Code	ADVANCED OPTIMIZATION	L	Т	P	С
21D04201	TECHNIQUES	3	0	0	3
	Semester			II	
Course Objectives:					
	orld problems require advance techniques to formulat			and	
	w optimization algorithms and procedures need to be				
	e of this class is to help students become opt				
	of basic theory and also practical skills to model and				
	learn a deeper understanding of the key concepts, theo				
	integer optimization, and some modern convex optim				
	niques, ways of solving optimization problems that an				
	ion, ways of solving optimization problems faster wh	en spe	ed is es	sential,	ways
	uality of sub-optimal solutions.				
	O): Student will be able to			~~~	
	e basic theory and some advanced topics in linear opt	imizat	ion, inte	eger	
	and convex optimization.		. 1		
	roper optimization technique(s) to attempt when probl	ems ar	e too la	rge or to	00
	o solve in a straightforward way.			1.	
	ion software and implement solution algorithms invol	ving la	irge sca	le	
optimization t		1			
Handle large d	data sets that accompany real-world optimization prob	lems.			
UNIT – I	L	.ecture	Hrs:09		
Integer programming	- cutting plane method and branch and bound	techni	que, n	nixed in	teger
programming					
UNIT – II		Lectu	re Hrs:	09	
Classical ontimizatio	n techniques: Single variable optimization with and v	withou	t constr	aints m	ulti
	n without constraints, multi – variable optimization w				
	s, Kuhn-Tucker conditions.		Stramts	meen	Ju
	for optimization: Nelder Mead's Simplex searc	h met	hod G	radient	of a
	cent method, Newton's method.	in met	.1100, 0	nacioni	or u
UNIT – III	cent method, rewton 5 method.	Lectu	re Hrs:	09	
	(GA) : Differences and similarities between convention				
8	principle, reproduction, crossover, mutation, terminat			•	
	ossover operators, GA for constrained optimization, dr				
-					
	ng (GP): Principles of genetic programming, terr	minal	sets, fi	inctiona	l sets,
	A & GP, solving differential equations using GP.	¥ .	**	0.0	
UNIT – IV			re Hrs:		
	cision making: Introduction to goal programming, N				
Ũ	A, Non-dominated sorted GA, convergence criterion, a	applica	tions of	multı-	
objective problems .					
	lytical hierarchical process, analytical network proces			00	
UNIT – V			re Hrs:		
	mization in Design and Manufacturing systems:		• •	. .	
	ath synthesis of a four-bar mechanism, minimizatio				
beam, optimization of	of springs and gears, general optimization model	of a	machin	ing pro	ocess,

optimiz	zation of arc welding parameters, and general procedure in optimizing machining operations
sequen	ce.
Textbo	
1.	Optimal design – Jasbir Arora, Mc Graw Hill (International) Publishers
2.	Optimization for Engineering Design – Kalyanmoy Deb, PHI Publishers
3.	Engineering Optimization – S.S. Rao, New Age Publishers
Refere	nce Books:
1.	Genetic algorithms in Search, Optimization, and Machine learning – D.E. Goldberg,
	Addison-Wesley Publishers
2.	Genetic Programming- Koza
3.	Multi objective Genetic algorithms - Kalyanmoy Deb, PHI Publishers
Online	e Learning Resources:
•	https://www.youtube.com/watch?v=eo2tOPV3AoE
•	https://www.youtube.com/watch?v=4t3z8y4CAcs
•	https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0002-
	introduction-to-computational-thinking-and-data-science-fall-2016/lecture-videos/lecture-1-introduction-and-optimization-problems/
•	https://ocw.mit.edu/courses/sloan-school-of-management/15-093j-optimization-methods-fall-2009/lecture-notes/
•	https://web.eng.fiu.edu/arleon/courses/Optimization/Lectures/Classical_Optimization.pdf
•	https://nptel.ac.in/content/storage2/courses/105108127/pdf/Module_1/M1L4_LN.pdf https://www.iare.ac.in/sites/default/files/OT%20Complete%20Notes_1.pdf

Course Code	FRACTURE, FATIGUE & CREEP DEFORMATION	L	Т	P	С
21D15201		3	0	0	3
	Semester]	Ι	
Course Objective		6 1			
	in understanding of the mechanics and micro-mechanisms				
	on, creep, fracture, and fatigue failure, as applied to metals,	, cerai	mics, c	ompos	ites,
	and biological materials.				
	thorough introduction to the principles of fracture mechanics.		dealer	h a a d	1:6.
	practical examples of the application of fracture mechanic	les to	desig	n and	life
	n methods and reporting.	tumo 1 f			
	basis for the use of fractography as a diagnostic tool for struct s (CO): Student will be able to	lural la	anures.		
	use simple continuum mechanics and elasticity to determinet	no stro	0000 0	roine	and
	interesting to determine the same same easierty to determine the termine the structure.		3565, 51	u anis, c	mu
-	ading and mathematical modeling of the elements of plastic of	leforn	nation	withre	enect
	um and microscopic mechanisms.		lation,	withite	speer
	use creep data to predict the life of structures at elevated to	emner	atures	and the	ڊ
	ding of mechanisms of creep deformation and fracture.	emper	atures	und th	
	cture mechanics to quantitatively estimate failure criteria for	both e	lastical	lv and	
	deforming structures, in the design of life prediction strategie				
	ans, with examples from automotive, aerospace, medical, and				
	nding of fatigue and how this affects structural lifetimes of con				f
	ramics, composites, and biological materials for optimal failu				
UNIT – I			Hrs:0		
Introduction:	Prediction of mechanical failure. Macroscopic failure mod	les; bi	ittle a	nd duc	tile
	ture in brittle and ductile materials - characteristics of fi				
	tra-granular failure, cleavage and micro-ductility, growth				
	acture transition temperature for notched and unnotched co	ompon	ents. F	Fracture	e at
elevated temper					
	S: Concept of energy release rate, G, and fracture energy, R. N	Modifi	cation	for duc	tile
	conditions. Concept of R curves.	¥.		0.0	
UNIT – II			ure Hrs		1 0
	Fracture Mechanics, (LEFM). Three loading modes and the				
•	stress concentration factor, stress intensity factor and the n	nateri	al para	imeter	the
critical stress in	•	a offa	ot of a	omnon	ant
	instraint, definition of plane stress and plane strain and th asticity at the crack tip and the principles behind the approximation of the principles behind the approximation of the stress and plane stress and plane stress and plane stress and plane stress and the principles behind the approximation of plane stress and the approximation of plane stress and pl				
	and size. Limits on the applicability of LEFM.	IUAIIII	ate dei	Ivation	01
UNIT – III	and size. Emilits on the applicability of EEI W.	Lect	ure Hrs	· 09	
	Fracture Mechanics; (EPFM). The definition of alternative	Leen			
	n parameters, Crack Tip Opening Displacement, and the J in	tegral	. Meas	uremer	ntof
	examples of use.	0-04			
	Aicrostructure on fracture mechanism and path, cleava	ge ar	nd duc	tile fa	ilure,
factors improving					
UNIT – IV		Lectu	ure Hrs	: 09	

Fatigue: definition of terms used to describe fatigue cycles, High Cycle Fatigue, Low Cycle Fatigue,
mean stress R ratio, strain and load control. S-N curves. Goodmans rule and Miners rule.
Micromechanisms of fatigue damage, fatigue limits and initiation and propagation control, leading to
a consideration of factors enhancing fatigue resistance. Total life and damage tolerant approaches to
life prediction.
UNIT – V Lecture Hrs: 09
Creep deformation: the evolution of creep damage, primary, secondary and tertiary creep. Micro-
mechanisms of creep in materials and the role of diffusion. Ashby creep deformation maps. Stress
dependence of creep - power law dependence. Comparison of creep performance under different
conditions - extrapolation and the use of Larson-Miller parameters. Creep-fatigue interactions.
Examples.
Textbooks:
1. T.L. Anderson, Fracture Mechanics Fundamentals and Applications, 2nd Ed. CRC press,
(1995)
2. B. Lawn, Fracture of Brittle Solids, Cambridge Solid State Science Series 2nd ed1993.
3. J.F. Knott, Fundamentals of Fracture Mechanics, Butter worths (1973)
4. J.F. Knott, P Withey, Worked examples in Fracture Mechanics, Institute of Materials.
5. H.L.Ewald and R.J.H. Wanhill Fracture Mechanics, Edward Arnold, (1984).
Reference Books:
1. S. Suresh, Fatigue of Materials, Cambridge University Press, (1998)
2. L.B. Freund and S. Suresh, Thin Film Materials Cambridge University Press,(2003).
3. G. E. Dieter, Mechanical Metallurgy, McGraw Hill, (1988)
4. D.C. Stouffer and L.T. Dame, Inelastic Deformation of Metals, Wiley (1996)
F.R.N. Nabarro, H.L. deVilliers, The Physics of Creep, Taylor and Francis, (1995)
Online Learning Resources:
• https://nptel.ac.in/courses/112/107/112107241/
 https://youtu.be/FBS9qI0A6mw
 https://youtu.be/8B1AMTz5GNc
 https://www.youtube.com/watch?v=4qxOT3GBRds
 http://www.infocobuild.com/education/audio-video-courses/mechanical-
engineering/EngineeringFractureMechanics-IIT-Madras/lecture-04.html
 https://youtu.be/81ttaX6pmt4
https://youtu.be/JPDxaOCbze0

Course Code	INDUSTRIAL ROBOTICS AND EXPERT SYSTEMS	L	Т	Р	C
21D15202a	Program Elective Course – III	3	0	0	3
	Semester]	Ι	
Course Objective					
	eam name and choose roles for each person on the team. You	may u	ise the	roles v	ve
	ne class or create roles as a team.				
	nation of roles must be described of your journal. Give an exa		of a tas	sk that	role
	rform and a quote of what they might say. (Be specific to robo		1		1
	who is assigned to each role will be on page 3 of the journal. Fased on how well you work together. All students have contrib				de
	the ability to use our hands and cognitive skills to work togeth		· ·		alvas
	re understanding of the process of designing a robot.			se mv	51765
	s gives students a real life experience on what it takes to be a p	vrofess	sional e	noinee	r
	s (CO): Student will be able to		,ionui c	inginee	1.
	challenge you must design a blue print in your team log.				
	allow you to see your original design and any changes you ma	ke in 1	naking	sure v	our
	et's its objective.		- C	J	
	er to label each part and explain how many you needof each p	oart			
	robot. You MUST create the blue prints while building the ro				
• This will	enable you to see if you included everything you need on the	blue p	rint		
If you fin	d that as you are building your robot you need more parts, you	1 also 1	need to	add th	iose
parts to th	ne blue print.				
UNIT – I		ecture	e Hrs:0	9	
	ON AND ROBOT KINEMATICS				
	and scope of Industrial robots - Robot anatomy - Wor				
	l effectors – Sensors. Robot Kinematics – Direct and inver				
U U	ntrol of robot manipulators – Robot dynamics – Methods for o	orienta	tion ar	d loca	tion
of objects. UNIT – II		Last	ure Hrs	. 00	
	S AND CONTROL	Lecu	are mrs	: 09	
	Robot motion – Position and velocity sensing devices – Des	ion of	f drive	system	ns —
	eumatic drives – Linear and rotary actuators and control val				
	ctric drives – Motors – Designing of end effectors – Vacu				
operated grippers	• •	,	0		
UNIT – III		Lectu	ure Hrs	: 09	
ROBOT SENSO	RS				
	Sensors - Tactile sensor - Proximity and range sensors -				
	stem - Image Representation - Image Grabbing -Image pr				
-	nt – Contrast Stretching – Band Rationing - Image segmentat	ion - 1	Pattern	recogi	nition
– Training of visi	on system.	.		0.0	
UNIT – IV		Lecti	are Hrs	: 09	
	DESIGN AND APPLICATION		[1]tin]-	Dobot	and
	design and control – Safety in Robotics – Robot cell layout nce – Robot cycle time analysis. Industrial application of robot		unipie	KUUUU	s and
UNIT – V			ure Hrs	· 09	
	L RAMMING, ARTIFICIAL INTELLIGENCE AND EXPE			. 07	
	VARIATION, ANTIPICIAL INTELLIGENCE AND EAFE	1/1			

M.TECH. IN MACHINE DESIGN COURSE STRUCTURE & SYLLABI

SYSTEMS Methods of Robot Programming – Characteristics of task level languages lead through programming methods – Motion interpolation. Artificial intelligence – Basics – Goals of artificial intelligence – AI techniques – problem representation in AI – Problem reduction and solution techniques - Application of AI and KBES in Robots.

Textbooks:

1. K.S.Fu, R.C. Gonzalez and C.S.G. Lee, "Robotics Control, Sensing, Vision and Intelligence", Mc Graw Hill, 1987.

Reference Books:

- 1. Yoram Koren," Robotics for Engineers' Mc Graw-Hill, 1987.
- 2. Kozyrey, Yu. "Industrial Robots", MIR Publishers Moscow, 1985.
- 3. Richard. D, Klafter, Thomas, A, Chmielewski, Michael Negin, "Robotics Engineering –An Integrated Approach", Prentice-Hall of India Pvt. Ltd., 1984.
- 4. Deb, S.R." Robotics Technology and Flexible Automation", Tata Mc Graw-Hill, 1994.
- 5. Mikell, P. Groover, Mitchell Weis, Roger, N. Nagel, Nicholas G. Odrey," Industrial Robotics Technology, Programming and Applications", Mc Graw-Hill, Int. 1986.
- 6. Timothy Jordanides et al ,"Expert Systems and Robotics ", Springer –Verlag, New York, May 1991.

Online Learning Resources:

1.https://freevideolectures.com/course/4560/nptel-mechanism-robot-kinematics

2.https://see.stanford.edu/course/cs223a

3.https://cosmolearning.org/courses/introduction-to-robotics/video-lectures/

4.https://www.youtube.com/watch?v=0yD3uBshJB0

5.https://nptel.ac.in/courses/112/105/112105236/

6.https://www.youtube.com/watch?v=xrwz9IxpMJg

7.https://www.coursehero.com/file/59785981/Lecture-9-Robot-cell-designppt/

8.https://www.plantautomation-technology.com/articles/different-types-of-robot-programming-

languages

Course Code 21D15202b	EXPERIMENTAL STRESS ANALYSIS	L 3	<u>Т</u> 0	P 0	C 3
21D152020	Program Elective Course – III Semester	3	-	0 11	3
	Semester			11	
Course Objective	S:				
•	wareness on experimental method of finding the response of the	struct	ire f	odiffe	erent
types of lo		, ci ace		ounne	
51					
	(CO): Student will be able to	•	1 .	• •	1
exhaustive and also a In additior	se covers the basic aspects of experimental stress anal treatment of the most versatile techniques like photo elasticity brief introduction to the emerging techniques like digital image of it also provides the fundamental aspects of six different exper- Aoiré, Brittle Coatings, Holography, Speckle Methods, Ther	and orrela	strain ation al te	n gau 1. chniq	iges jues
	nd Caustics.	mo e	last		1688
UNIT - I		Leo	ture	Hrs:0	9
	ory of Elasticity, Plane stress and plane strain conditions, Com				
	stress strain relations.	patio	inty	Jonun	10115
	ent Methods: Various types of strain gauges, Electrical Resist	ance	strai	n gau	iges.
	ain gauges, strain gauge circuits, effect of poission ratio st			•	•
	esidual strain general applications.		0		,
UNIT - II		Lec	ture	Hrs:	09
	Introduction, coating stresses, failure theories, brittle coating of	rack	patt	erns,	cracl
0	based brittle coatings, resin based brittle coatings, test procedure				
	n procedures, analysis of brittle coating data.				U
UNIT - III		Lec	ture	Hrs:	09
Moire Methods: I	ntroduction, mechanism of formation of Moire fringes, the geon	netrica	al ap	proa	ch to
	ysis, the displacement field approach to Moire-Fringe anal				
	surements, out of plane slope measurements, sharpening and	l mu	ltipli	catio	n of
	perimental procedure and techniques.				
UNIT - IV				Hrs:	
-	Photo elasticity – Polariscope – Plane and circularly polarized lig	ht, B	right	t and	dark
	elastic materials – Isochromatic fringes – Isoclinics				
UNIT - V				Hrs:	
	al Photo elasticity : Introduction, locking in model deformation,				
model and interpr	elasticity, machining cementing and slicing three-dimensional retation of the resulting fringe patterns, effective stresses, the nensions, applications of the Frozen-stress method, the scattered	e she	ar- (differ	
Birefringent Coat				uno a.	
0	ting stresses and strains, coating sensitivity, coating mater	als.	appl	icatio	n o
	of coating thickness, Fringe-order determinations in coating				
methods.		,		I	
Textbooks:					
	stress analysis by Srinath Ls				
•	stress analysis by Dally and Riley, Mc Graw-Hill				
Reference Books:					
	Athematical theory of Elasticity by Love .A.H				
	y by Frocht				

M.TECH. IN MACHINE DESIGN COURSE STRUCTURE & SYLLABI

Online Learning Resources:

1.https://nptel.ac.in/courses/112/106/112106247/

2.https://youtu.be/wYxl7tt_E7E

3.https://nptel.ac.in/courses/112/106/112106068/

4.https://youtu.be/sV4VQoenLdI

5.https://youtu.be/a0dkrF02N74

6.https://www.youtube.com/watch?v=R5gc8-Ycb7Q

Course Code	THEORY OF PLASTICITY	L	Τ	Р	С
21D15202c	Program Elective Course – III	3	0	0	3
	Semester			II	
Course Objectiv		1		1.	
	cquires information on elementary theory of plasticity inclusive th				
	he external loading and non-linear permanent straining of hardened	1 me	tallic	Isotr	opic
	tropic continuum.	. 1.0			
	nt will understand the fundamentals of progressive methods of me	tal I	ormi	ng pro	ocess
design, na	amely modeling and finite element simulation.				
Course Outcome	s (CO): Student will be able to				
	postgraduate course aimed towards providing strong conceptua	al fo	unda	tions	for
	g continuum theories of plastic deformation.				
	on we develop several important formulations of plastic flow w	hich	are	of m	uch
	use in current industrial applications.				
	se begins with a broad overview of plasticity. Next, all the pertin				
	n mechanics and thermodynamics are introduced. The general the				
	eveloped using the theory of continuous distribution of dislocation	ns ar	nd iri	evers	ible
thermody			_	_	
	discuss the special cases when elasticity is either infinitesima				
	of associative flow rule, hardening, uniqueness, and stability are c	lscu	ssed	in de	ta11.
	the lectures with an introduction to plastic waves.	Ŧ		XX (
UNIT - I				Hrs:(
	odeling Uniaxial behavior in plasticity. Index notation, Cartesian				
	tress, stress deviator tensors. Invariants, principal, mean stres				
	representation of stress in 2 & 3 dimensions. Haigh-Westerg				
	tions of a body. Yield criteria: Tresca's, von Mises rules, Druck	er-P	rager	crite	rion,
anisotropic yield UNIT - II		La	oturo	Hrs:	00
	Cauchy's formulae for strains, principal strains, principal shear				
	ain-displacement relationships. Linear elastic stress strain relat				
	linear elastic stress strain relations	10113	, 00	neran	Zeu
	ual work and its rate forms: Drucker's stability postulate, norm	nality		nvexit	vand
_	elastic solid. Incremental stress strain relations.	laney	, •••		.y und
UNIT - III		Lee	cture	Hrs:	09
Criteria for load	ling and unloading: Elastic and plastic strain increment tensors				
	associated with different Yield criteria, Convexity, normality				
	elastic-plastic materials. Expansion of a thick walled cylinder.			1	
	ess strain relationships: Prandtl - Reuss material model. J2 d	efor	natio	on the	eory,
	material, General Isotropic materials.				•
UNIT - IV	•	Lee	cture	Hrs:	09
Deformation the	eory of plasticity: Loading surface, Hardening rules. Flow r	ule	and	Druck	kers
	e. Concept of effective stress and effective strain, mixed ha				
stability postulat	e. Concept of effective suess and effective strain, mixed ha		<i>C</i>	mater	iui.
	e. Concept of effective suess and effective strain, mixed ha		0	mater	iui.
Problems.	ormulation for an elastic plastic matrix: Numerical algorithm		-		
Problems. Finite element f	-	ns fo	or so	lving	non
Problems. Finite element f	ormulation for an elastic plastic matrix: Numerical algorithm Convergence criteria, Numerical implementations of the elastic	ns fo	or so	lving	non

M.TECH. IN MACHINE DESIGN COURSE STRUCTURE & SYLLABI

Bounding surface theory: Uniaxial and multiaxial loading anisotropic material behaviour Theroms of limit analysis : Statically admissible stress field and kinematically admissible velocity field. Upper and lower bound theorms, examples and problems.

Textbooks:

1. Plasticity for structural engineering W.F.Chen s and D.J.Han, Springer verlag-1987.

2. Mechanics of Materials -II, Victor E. Saouma

Reference Books:

1. Theory of elasticity and plasticity by Sadhu Singh

2. Theory of elasticity and plasticity by Timoshenko

Online Learning Resources:

1.https://mae.ufl.edu/nkim/egm6352/Chap4.pdf

2.https://ocw.mit.edu/resources/res-2-002-finite-element-procedures-for-solids-and-structures-spring-2010/nonlinear/lecture-17/

3.https://www.youtube.com/watch?v=1ydR6LFFbhA

4.https://www.youtube.com/watch?v=nKVFDQpTCrs

Course Code	MECHANICAL VIBRATIONS	L	Т	Р	С
21D15203a	Program Elective Course – IV	3	0	0	3
	Semester			[]	
Course Objective					
	cessful completion of this course, you will be able to under				
	ate concepts necessary for the analysis of the dynamics of comple	x str	uctur	es un	der
	ading conditions.		-		1
	lar, you will be able to: Syllabus ME 56300 – Mechanical Vibra				
	he structural properties of complex structures to the overall vibrat	10n c	harac	cteris	tics
	b) design systems having required dynamical properties.		.f. 1:.		
	correctional and numerical procedures to predict the dynamic response	nse	or dis	crete	or
	s structural systems under the most diverse loading conditions.	7 11.	مسمله	المسم	h an a
	educed order models to treat systems with a large number of DOI				
	t approximate methods for the numerical solution of distributed parameters of the dynamics of nonlinear lumped parameters				118.
	s (CO): Student will be able to		sten	15.	
	e will cover fundamental concepts on the vibration of mechanical	ovet	ma i	aalud	ina
	nited to, review of systems with one degree for freedom, Lagrange				
	r multiple degree of freedom systems,	sey	uatio	115 01	
	action to matrix methods, transfer functions for harmonic response	im	auleo	roon	200
	esponse, convolution integrals for response to arbitrary inputs, pri				
	s, applications to critical speeds, measuring instruments, isolation,				
	on to nonlinear problems.	1015	ionai	syste	iiis,
UNIT - I	on to nonmear problems.	Lec	ture l	Jrc.0	
	Freedom systems: Undamped and damped free vibrations: for				
	; Response to harmonic excitation; rotating unbalance and su				
	and transmissibility.	ppon	e ene	itutio	.,
	Periodic Excitations : unit Impulse, unit step and unit Ramp fu	inctio	ons. 1	espo	nse
	tions, The Convolution Integral; shock spectrum; System response				
Transformation m		,e e j	the	Lapi	uee
UNIT - II		Lec	ture l	Hrs:9	
	ring instruments : Vibrometers, velocity meters & accelerometers				
	lom systems: Principal modes – undamped and damped free and		d vib	ratio	ns:
undamped vibration					
UNIT - III	,	Lec	ture l	Hrs:9	
Multi degree fre	edom systems: Matrix formulation, stiffness and flexibility influ				
	lem; normal modes and their properties; Free and forced vil				
	of matrix inversion; Torsional vibrations of multi - rotor sy				
systems; Discrete	•			U	
UNIT - IV			ture l		
	ods: Rayliegh's, stodola's, Matrix iteration, Rayleigh-Ritz Me	ethod	and	Hol	zer's
methods.	· · ·				
UNIT – V			ture l		
	ms: Free vibration of strings - longitudinal oscillations of bars-t	rave	rse vi	brati	ons
	al vibrations of shafts.				
Critical speeds of	shafts: Critical speeds without and with damping, secondary critical speeds without and with damping, secondary critical speeds without and with damping secondary speeds without and with damping secondary secondary speeds without and with damping secondary s	cal s	peed.		

M.TECH. IN MACHINE DESIGN COURSE STRUCTURE & SYLLABI

Textbooks:

1. Elements of Vibration Analysis by Meirovitch.

2. Mechanical Vibrations by G.K. Groover.

Reference Books:

1. Vibrations by W.T. Thomson

2. Mechanical Vibrations – Schaum series.

3. Vibration problems in Engineering by S.P. Timoshenko.

4. Mechanical Viabrations – V.Ram Murthy.

Online Learning Resources:

1.https://nptel.ac.in/courses/112/103/112103112/

2.https://youtu.be/NqiGVeOn9cY

3.https://youtu.be/KcWCkNdEQfs

4.https://youtu.be/s287PPKRXBU

5.https://youtu.be/LaxkM1B3Lm4

6.https://www.youtube.com/watch?v=bn8Ztp3kTq8

Course Code	DESIGN FOR MANUFACTURING	L	T	P	C
21D15203b	Program Elective Course – IV	3	0	0	3
	Semester		Ι	Ι	
Course Objecti		•		1	
	ze the attributes along which the success or failure of a manufacture will be measured, quality, and rate and flavibility.	iring p	process	s,maci	nne,
	m will be measured: quality, cost, rate and flexibility.			-fo otra	
	exposure to a range of current industrial processes and practices u) mani	ITACIU	re
*	s in high and low volumes. Focus in depth on a few selectedproces			(1	
	hysics to understand the factors that control the rate of production	and 1	nnuen	cethe	
· ·	cost and flexibility of processes.	1			
	and the impact of manufacturing constraints on product design and	-	-	-	
·	n understanding of variation to the factors that control the product	ion ra	te and	influe	nce
	ity, cost and flexibility of processes and systems.				
	es (CO): Student will be able to				
	cturing is how we satisfy human need and create wealth.		1		1
	llenge is to create a product that is responsive to the customer with	h higi	n qual	ity and	1
low cost				.1 .	
	ate should have the tools and confidence to go into a manufacturin				15
	unfamiliar process to make a product he/she has not seen, and ye	t be a	ble to	таке	
	nt decisions.	Last			
UNIT - I	Design philosophy stops in design process general design pulse fo		ure H		
	Design philosophy-steps in design process-general design rules for of designing for economical production-creativity in design.	or mai	lutacu	uradin	ty-
	tion of materials for design-developments in material technology	orito	ria for	moto	mia1
	al selection interrelationship with process selection-process select			mate	llai
UNIT - II	ar selection interrelationship with process selection-process select		ure H	·c· 00	
	cesses: Overview of various machining processes-general design				nσ_
	erance and surface roughness-Design for machining – easily				
	machining ease with suitable examples. General design re				
machined parts.	indenning case with suitable examples. General design it	Conn	liciidu	10115	101
UNIT - III		Lect	ure H	rs· 09	
	Appraisal of various casting processes, selection of casting p				esign
	or casting-casting tolerance-use of solidification, simulation in ca				
design rules for		U	U	1	
UNIT - IV	×	Lect	ure H	rs: 09	
Metal joining:	Appraisal of various welding processes, factors in design of v	veldm	ents -	- gene	ral
	s-pre and post treatment of welds-effects of thermal stresses in v				
brazed joints.		-		-	
Forging: Design	factors for forging - closed die forging design - parting lines of	f dies	- droj	p forg	ing
die design - gen	eral design recommendations.				-
UNIT - V			ure H		
	Sheet metal work: Design guide lines extruded sections-de				
punching, blank	ting, bending, deep drawing-Keeler Goodman forging line dia	agram	- co	mpon	ent
design for blank					
Plastics: Visco	elastic and creep behavior in plastics-design guidelines for plastic	comp	onent	s- des	ign
	or injection moulding				
Textbooks:					

M.TECH. IN MACHINE DESIGN COURSE STRUCTURE & SYLLABI

- 1. Design for manufacture, John cobert, Adisson Wesley. 1995
- 2. Design for Manufacture by Boothroyd,

Reference Books:

1. ASM Hand book Vol.20

Online Learning Resources:

1.https://nptel.ac.in/courses/112/101/112101005/

2.https://www.iare.ac.in/sites/default/files/lecture_notes/DFMA_LECTURE_NOTES.pdf

3.https://ocw.mit.edu/courses/mechanical-engineering/2-008-design-and-manufacturing-ii-spring-2004/lecture-notes/

4.https://dokumen.tips/documents/design-for-manufacturing-and-assembly-1-lecture-notes-on-design-for-manufacturing.html

5.https://www.youtube.com/watch?v=ofmbhbVCUqI

6.https://onlinecourses.nptel.ac.in/noc21_me66/preview

Course Code	PRESSURE VESSEL DESIGN	L	Т	Р	С
21D15203c	Program Elective Course – IV	3	0	0	3
	Semester	II			
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~					
Course Objectives					
	posure to various types of process equipments and their design.				
	and the different types of stresses and their effects in pressure ves	sel.			
	and the piping layout and the stresses acting on it.				
	(CO): Student will be able to				
-	n plates and shells for various types of stresses.				
0	lls, end closures and nozzles ofpressure vessels using ASME cod	les.			
	bing systems.				
UNIT - I				Hrs: (
	erials-shapes of Vessels-stresses in cylindrical, spherical and				
	Vessels subjected to internal pressure, wind load, bending and	d tor	que-i	latior	ı of
	nical and tetrahedral vessels.				
	vlinders: Shrink fit stresses in built up cylinders-auto frettage	of th	ick c	ylind	ers.
Thermal stresses in	Pressure Vessels.	1			
UNIT - II		Lec	ture	Hrs: ()9
	ular plates: Pure bending-different edge conditions.				
	plates: Simple supported and clamped ends subjected to				
	ed loads-stresses from local loads. Design of dome bends, shel	l cor	nnecti	ions,	flat
heads and cone ope	nings.	-			
UNIT - III				Hrs: (
	sses in pressure vessels: Introduction, beam on an elastic fou				•
	nfinite beam, cylindrical vessel under axially symmetrical lo				
	d deformations on pressure vessels, discontinuity stresses in ve	ssels	, stre	esses	ina
	oformation and stresses in flanges.	-			
UNIT - IV				Hrs: (
	naterials and their environment: Introduction, ductile mate				
	gth of steel, Leuder's lines, determination of stress patterns		-		
	viour of steel beyond the yield point, effect of cold work or strain				
	of pressure vessel steels, fracture types in tension, toughness of				
	ion of steels, fatigue of metals, fatigue crack growth, fatigu		-		
-	damage, stress theory of failure of vessels subject to steady	stat	e and	1 fati	gue
conditions.		Ŧ			
UNIT - V				Hrs: (
	ons: Influence of surface effects on fatigue, effect of the envir				
	ife, thermal stress fatigue, creep and rupture of metals at eleva				
	ment of pressure vessel steels, brittle fracture, effect of enviro				
	toughness relationships, criteria for design with defects, signif				
	ons, effect of warm prestressing on the ambient temperature tous	ghne	ss of	press	ure
vessel steels.	1 1 . 1 . 1				
0	ocalized stresses and their significance, stress concentration at a				
	a cylindrical vessel, stress concentration about a circular hole in				
	al openings, stress concentration, stress concentration factors				
-	nal transient conditions, theory of reinforced openings, nozz	zle r	einfo	rcem	ent,
placement and shap	e, fatigue and stress concentration				

M.TECH. IN MACHINE DESIGN COURSE STRUCTURE & SYLLABI

Textbooks:

- 1. Theory and design of modern Pressure Vessels by John F.Harvey, Van nostrand reihold company, New York.
- 2. Pressure Vessel Design and Analysis by Bickell, M.B.Ruizcs.

Reference Books:

- 1. Process Equipment design- Beowll & Yound Ett.
- 2. Indian standard code for unfired Pressure vessels IS:2825.
- 3. Pressure Vessel Design Hand Book, Henry H.Bednar, P.E., C.B.S.Publishers, New Delhi.
- 4. Theory of plates and shells- Timoshenko & Noinosky.

Online Learning Resources:

1.https://www.youtube.com/watch?v=erW4HZ5I928

2.https://www.youtube.com/watch?v=Ja03J1RQ3Hw

3.https://www.youtube.com/watch?v=5-7ZoE1cBxY

4.https://www.youtube.com/watch?v=ZCzTBm2xFwg

5.https://www.youtube.com/watch?v=BfM8vQ3N9gw

6.https://www.youtube.com/watch?v=PChaq8Y1BGk

Course Code	MACHINE DYNAMICS LABORATORY	L	Т	P	С
21D15204		0	0	4	2
	Semester]	Ι	
Course Objectiv	ves:				
	able understand dynamic analysis				
Course Outcom					
	te the natural frequency of damped and undamped systems.				
	te the natural frequency of undamped torsional vibration of rotor				
	n dynamic balancing of rotating and reciprocating masses e the free and forced vibrations of beam element				
	ine gyroscopic effect of rotating body.				
List of Experim					
	al frequency of simple pendulum				
02. Determ	nine the moment of inertia of a flywheel.				
03. Determ	nination of steady state amplitude of forced vibratory system				
04. Natura	al frequency of single rotor system				
05. Natura	al frequency of single rotor with damping				
06. Undar	nped free vibrations of beam				
07. Damp	ed free vibrations of beam				
08 Forced	d vibrations of beam.				
09. Forced	d vibration beam with damped.				
10. Frictio	on and Wear Apparatus				
11. Determ	nination of the magnitude and orientation of the balancing mass	in dy	namio	2	
balanc	ing				
12. Motor	ized Gyroscopic Couple Apparatus.				
References:					
1. Mechani	cal Vibrations by M. P Grover				
Online learning r	resources/Virtual labs:				

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR (Established by Govt. of A.P., ACT No.30 of 2008) ANANTHAPURAMU - 515 002 (A.P) INDIA

M.TECH. IN MACHINE DESIGN COURSE STRUCTURE & SYLLABI

Cours	e Code	MODELLING AND ANALYSIS LAB	L	Т	Р	С
21D	15205		0	0	4	2
		Semester]	I	
Course	Objective	26.				
		should be able to understand modeling of curves and surfaces				
		should be able to understand FEM concept of trusses, beams and	frame	es.		
		should be able to understand modeling software for 2-D and 3-D	•			
		should be able to solve structural problems using FEM software				
	Outcome	programs for modeling the synthetic curves and surfaces.				
•		finite element code to solve problems involving Trusses, Beams	and			
	Frames	Thinke element eode to solve problems involving Trusses, Beam	unu			
•	Build 2I	O and 3D objects using a modeling software				
•	Solve str	ructural problems using finite element software				
•	Execute	mini project involving both modeling and analysis				
List of	Experime	nts:				
01	Develo	p Programs for Transformations in CAD				
02.	Develo	p Programs for Synthetic Curves in CAD				
03.	Introdu	ction to Pro/E and working with features like Extrude & Revolve	e in sk	ketch 1	mode	
04.	Model	solids with features like Hole, Round, Chamfer and Rib				
05.	Model	solids with features like Pattern, Copy, Rotate, Move and Mirror				
06.	Assemb	bly modeling in Pro/E, Generating, editing and modifying drawing	ngs in	Pro/E	2	
07.	Solutio	n of Trusses problems using the developed code				
08.	Solutio	n of Beams and Frames using the developed code				
09.	Solutio	n of problems involving triangular element using the developed	code			
10.	Solutio	n of problems of Trusses using ANSYS				
11.	Solutio	n of problems of Beams and Frames using ANSYS				
12.	Solutio	n of problems involving triangular element etc. using ANSYS				
Referen	ces:					
	Lab manu					
Unline l	earning re	sources/Virtual labs:				

Course Code QUALITY CONCEPTS IN DESIGN I	Course Code	OUAL ITY CONCEPTS IN DESIGN	т	Т	P	С
Course Objectives: Semester III • To impart knowledge on various concepts in engineering design and principles of implementing quality in a product or service through tools such as quality houses, controm charts, statistical process control method, failure mode effect analysis and various strategies of designing experiments, methods to uphold the status of six sigma and improve the reliabilit of a product. • To gather knowledge on fundamentals of design and its methods, robust design, embodiment principles, various methods in design of experiments, reliability, statisticaltools and six sigma techniques. Course Outcomes (CO): Student will be able to • Understand the design cum quality concepts. • Get familiarized with various concepts indesign, quality and reliability principles in the desig an engineering product or aservice. UNIT - I Lecture Hrs: 09 DESIGN FUNDAMENTALS, METHODS AND MATERIAL SELECTION Morphology of Design – The Design Process – Computer Aided Engineering – Concurrer Engineering – Competition Bench Marking – Creativity – Theory of Problem solving (TRIZ) Value Analysis - Design for Manufacture, Design for Assembly – Design for casting, Forging Metal Forming, Machining and Welding UNT - II Lecture Hrs: 09 DESIGN FOR QUALITY Quality-Objectives and functions-Targets- Stakehold Measures and Parformance metrics - developing the experimental plan - experimental design - testing in factors. Running the experiments – Conducting the analysis-Selecting and conforming factor-Set poi reflecting and repeating.	Course Code	QUALITY CONCEPTS IN DESIGN Program Elective Course V	L 3			
Course Objectives: • To impart knowledge on various concepts in engineering design and principles of implementing quality in a product or service through tools such as quality houses, contror charts, statistical process control method, failure mode effect analysis and various strategies of designing experiments, methods to uphold the status of six sigma and improve the reliabilit of a product. • To gather knowledge on fundamentals of design and its methods, robust design, embodiment principles, various methods in design of experiments, reliability, statisticaltools and six sigma techniques. Course Outcomes (CO): Student will be able to • Understand the design cum quality concepts. • Get familiarized with various concepts indesign, quality and reliability principles in the desig an engineering product or aservice. UNIT • I Lecture Hrs: 09 DESIGN FUNDAMENTALS, METHODS AND MATERIAL SELECTION Morphology of Design – The Design Process – Computer Aided Engineering – Concurrer Engineering – Competition Bench Marking – Creativity – Theory of Problem solving (TRIZ) Value Analysis - Design for Manufacture, Design for Assembly – Design for casting, Forging Metal Forming, Machining and Welding UNIT • I Lecture Hrs: 09 DESIGN FOR QUALITY Quality-Objectives and functions-Targets- Stakehold Measures and Matrices-Design of Experiments design process - Identification of control factors, n factors, and performance metrics - developing the experimental plan - experimental design –testing n factors- Running the experiments –Conducting the ana	21D133V1a		3	-	-	5
To impart knowledge on various concepts in engineering design and principles of implementing quality in a product or service through tools such as quality houses, contro charts, statistical process control method, failure mode effect analysis and various strategies of designing experiments, methods to uphold the status of six sigma and improve the reliability of a product. To gather knowledge on fundamentals of design and its methods, robust design, embodiment principles, various methods in design of experiments, reliability, statisticaltools and six sigma techniques. Course Outcomes (CO): Student will be able to Understand the design cum quality concepts. Get familiarized with various concepts indesign, quality and reliability principles in the desig an engineering product or aservice. UNIT - I		Semester				
To impart knowledge on various concepts in engineering design and principles of implementing quality in a product or service through tools such as quality houses, contro charts, statistical process control method, failure mode effect analysis and various strategies of designing experiments, methods to uphold the status of six sigma and improve the reliability of a product. To gather knowledge on fundamentals of design and its methods, robust design, embodiment principles, various methods in design of experiments, reliability, statisticaltools and six sigma techniques. Course Outcomes (CO): Student will be able to Understand the design cum quality concepts. Get familiarized with various concepts indesign, quality and reliability principles in the desig an engineering product or aservice. UNIT - I	Course Objective	28:				
Understand the design cum quality concepts. Get familiarized with various concepts indesign, quality and reliability principles in the desig an engineering product or aservice. UNIT - I Lecture Hrs: 09 DESIGN FUNDAMENTALS, METHODS AND MATERIAL SELECTION Morphology of Design – The Design Process – Computer Aided Engineering – Concurrer Engineering – Competition Bench Marking – Creativity – Theory of Problem solving (TRIZ) Value Analysis - Design for Manufacture, Design for Assembly – Design for casting, Forging Metal Forming, Machining and Welding UNIT - II Lecture Hrs: 09 DESIGN FOR QUALITY Quality Function Deployment -House of Quality-Objectives and functions-Targets- Stakehold Measures and Matrices-Design of Experiments –design process- Identification of control factors, n factors, and performance metrics - developing the experimental plan- experimental design –testing n factors. Running the experiments –Conducting the analysis-Selecting and conforming factor-Set poi reflecting and repeating. UNIT - III Lecture Hrs: 09 FAILURE MODE EFFECT ANALYSIS AND DESIGN FOR SIX SIGMA Basic methods: Refining geometry and layout, general process of product embodiment - Embodime thecklist- Advanced methods: systems modeling, mechanical embodiment principles-FMEA metho linking fault states to systems modeling - Basis of SIX SIGMA —Project selection for SIX SIGMA- SIX SIGMA problem solving- SIX SIGMA in service and sma organizations - SIX SIGMA and lean production –Lean SIX SIGMA and services UNIT - IV Lecture Hrs: 09 DESIGN OF EXPERIMENTS Importance of Experimental Strategies, Basic principles of Design, Terminology,	implementcharts, statedesigningof a produtionTo gatheembodiment	ting quality in a product or service through tools such as qua tistical process control method, failure mode effect analysis and experiments, methods to uphold the status of six sigma and im act. For knowledge on fundamentals of design and its methods ent principles, various methods in design of experiments, reliabil	lity h variou prove s, roł	iouse us str the the	s, co ategi reliat desig	ntrol es of pility gn,
Get familiarized with various concepts indesign, quality and reliability principles in the design an engineering product or aservice. UNIT - I Lecture Hrs: 09 DESIGN FUNDAMENTALS, METHODS AND MATERIAL SELECTION Morphology of Design – The Design Process – Computer Aided Engineering – Concurrer Engineering – Competition Bench Marking – Creativity – Theory of Problem solving (TRIZ) Value Analysis - Design for Manufacture, Design for Assembly – Design for casting, Forging Metal Forming, Machining and Welding UNIT - II Lecture Hrs: 09 DESIGN FOR QUALITY Quality Function Deployment -House of Quality-Objectives and functions-Targets- Stakehold Measures and Matrices-Design of Experiments –design process- Identification of control factors, n factors, and performance metrics - developing the experimental plan- experimental design –testing n factors- Running the experiments –Conducting the analysis-Selecting and conforming factor-Set poir reflecting and repeating. UNIT - III Lecture Hrs: 09 FAILURE MODE EFFECT ANALYSIS AND DESIGN FOR SIX SIGMA Basic methods: Refining geometry and layout, general process of product embodiment - Embodime checklist- Advanced methods: systems modeling, mechanical embodiment principles-FMEA methol linking fault states to systems modeling - Basis of SIX SIGMA –Project selection for SIX SIGMA- SIX SIGMA problem solving- SIX SIGMA in service and sma organizations - SIX SIGMA and lean production –Lean SIX SIGMA and services UNIT - IV Lecture Hrs: 09 DESIGN OF EXPERIMENTS Importance of Experimental Strategies, Basic principles of Design, Terminology,	Course Outcome	s (CO): Student will be able to				
an engineering product or aservice. UNIT - I Lecture Hrs: 09 DESIGN FUNDAMENTALS, METHODS AND MATERIAL SELECTION Morphology of Design – The Design Process – Computer Aided Engineering – Concurrer Engineering – Competition Bench Marking – Creativity – Theory of Problem solving (TRIZ) Value Analysis - Design for Manufacture, Design for Assembly – Design for casting, Forging Metal Forming, Machining and Welding UNIT - II Lecture Hrs: 09 DESIGN FOR QUALITY Quality Function Deployment -House of Quality-Objectives and functions-Targets- Stakehold Measures and Matrices-Design of Experiments –design process- Identification of control factors, n factors, and performance metrics - developing the experimental plan- experimental design –testing n factors- Running the experiments –Conducting the analysis-Selecting and conforming factor-Set point effecting and repeating. UNIT - III Lecture Hrs: 09 FAILURE MODE EFFECT ANALYSIS AND DESIGN FOR SIX SIGMA Basic methods: Refining geometry and layout, general process of product embodiment - Embodime checklist- Advanced methods: systems modeling, mechanical embodiment principles-FMEA metho linking fault states to systems modeling - Basis of SIX SIGMA -Project selection for SIX SIGMA- SIX SIGMA problem solving- SIX SIGMA in service and sma organizations - SIX SIGMA and lean production –Lean SIX SIGMA and services UNIT - IV Lecture Hrs: 09 DESIGN OF EXPERIMENTS Importance of Experimenta, Experimenta						
DESIGN FUNDAMENTALS, METHODS AND MATERIAL SELECTION Morphology of Design – The Design Process – Computer Aided Engineering – Concurrer Engineering – Competition Bench Marking – Creativity – Theory of Problem solving (TRIZ) Value Analysis - Design for Manufacture, Design for Assembly – Design for casting, Forging Metal Forming, Machining and Welding UNIT - II Lecture Hrs: 09 DESIGN FOR QUALITY Quality Function Deployment -House of Quality-Objectives and functions-Targets- Stakehold Measures and Matrices-Design of Experiments –design process- Identification of control factors, n factors, and performance metrics - developing the experimental plan- experimental design –testing n factors- Running the experiments –Conducting the analysis-Selecting and conforming factor-Set poir reflecting and repeating. UNIT - III Lecture Hrs: 09 FAILURE MODE EFFECT ANALYSIS AND DESIGN FOR SIX SIGMA Basic methods: Refining geometry and layout, general process of product embodiment - Embodime checklist- Advanced methods: systems modeling, mechanical embodiment principles-FMEA metho linking fault states to systems modeling - Basis of SIX SIGMA -Project selection for SIX SIGMA- SIX SIGMA problem solving- SIX SIGMA in service and sma organizations - SIX SIGMA and lean production –Lean SIX SIGMA and services UNIT - IV Lecture Hrs: 09			nciple	s in t	he de	esign of
Morphology of Design – The Design Process – Computer Aided Engineering – Concurrer Engineering – Competition Bench Marking – Creativity – Theory of Problem solving (TRIZ) Value Analysis - Design for Manufacture, Design for Assembly – Design for casting, Forging Metal Forming, Machining and Welding UNIT - II Lecture Hrs: 09 DESIGN FOR QUALITY Quality Function Deployment -House of Quality-Objectives and functions-Targets- Stakehold Measures and Matrices-Design of Experiments –design process- Identification of control factors, n factors, and performance metrics - developing the experimental plan- experimental design –testing n factors- Running the experiments –Conducting the analysis-Selecting and conforming factor-Set point reflecting and repeating. UNIT - III Lecture Hrs: 09 FAILURE MODE EFFECT ANALYSIS AND DESIGN FOR SIX SIGMA Basic methods: Refining geometry and layout, general process of product embodiment - Embodime checklist- Advanced methods: systems modeling, mechanical embodiment principles-FMEA metho linking fault states to systems modeling - Basis of SIX SIGMA -Project selection for SIX SIGMA- SIX SIGMA problem solving- SIX SIGMA in service and sma organizations - SIX SIGMA and lean production –Lean SIX SIGMA and services UNIT - IV Lecture Hrs: 09 DESIGN OF EXPERIMENTS Importance of Experimental Strategies, Basic	UNIT - I		Lect	ure H	Irs: 0	9
DESIGN FOR QUALITY Quality Function Deployment -House of Quality-Objectives and functions-Targets- Stakehold Measures and Matrices-Design of Experiments –design process- Identification of control factors, n factors, and performance metrics - developing the experimental plan- experimental design –testing n factors- Running the experiments –Conducting the analysis-Selecting and conforming factor-Set point veloping the experiments –Conducting the analysis-Selecting and conforming factor-Set point veloping the experiments –Conducting the analysis-Selecting and conforming factor-Set point veloping the experiments –Conducting the analysis-Selecting and conforming factor-Set point veloping the experiments –Conducting the analysis-Selecting and conforming factor-Set point veloping the experiments –Conducting the analysis-Selecting and conforming factor-Set point veloping the experimental plan- experimental design –testing n factors- Running the experiments –Conducting the analysis-Selecting and conforming factor-Set point veloping the experiments –Conducting the analysis-Selecting and conforming factor-Set point veloping the experiments –Conducting the analysis-Selecting and conforming factor-Set point veloping the experiments –Conducting the analysis-Selecting and conforming factor-Set point veloping the experimental general process of product embodiment - Embodiment checklist- Advanced methods: systems modeling, mechanical embodiment principles-FMEA met	Value Analysis Metal Forming,	- Design for Manufacture, Design for Assembly - Design for	or cas	sting,	Forg	ging,
UNIT - IIILecture Hrs: 09FAILURE MODE EFFECT ANALYSIS AND DESIGN FOR SIX SIGMABasic methods: Refining geometry and layout, general process of product embodiment - Embodime checklist- Advanced methods: systems modeling, mechanical embodiment principles-FMEA metho linking fault states to systems modeling - Basis of SIX SIGMA-Project selection for SIX SIGMA- SIX SIGMA problem solving- SIX SIGMA in service and sma organizations - SIX SIGMA and lean production -Lean SIX SIGMA and servicesUNIT - IVLecture Hrs: 09DESIGN OF EXPERIMENTSImportance of Experiments, Experimental Strategies, Basic principles of Design, Terminology,	Quality Function Measures and Ma factors, and perfor factors- Running	Deployment -House of Quality-Objectives and functions-T atrices-Design of Experiments –design process- Identification of rmance metrics - developing the experimental plan- experimenta the experiments –Conducting the analysis-Selecting and conform	f cont il desi	rol fa ign –i	actor: testin	s, noise g noise
Basic methods: Refining geometry and layout, general process of product embodiment - Embodime checklist- Advanced methods: systems modeling, mechanical embodiment principles-FMEA metho linking fault states to systems modeling - Basis of SIX SIGMA –Project selection for SIX SIGMA- SIX SIGMA problem solving- SIX SIGMA in service and sma organizations - SIX SIGMA and lean production –Lean SIX SIGMA and services UNIT - IV Lecture Hrs: 09 DESIGN OF EXPERIMENTS Importance of Experiments, Experimental Strategies, Basic principles of Design, Terminology,			Lect	ure H	Irs: 0	9
UNIT - IV Lecture Hrs: 09 DESIGN OF EXPERIMENTS Importance of Experiments, Experimental Strategies, Basic principles of Design, Terminology,	Basic methods: R checklist- Advanc linking fault states -Project selection	efining geometry and layout, general process of product embod eed methods: systems modeling, mechanical embodiment princi s to systems modeling - Basis of SIX SIGMA for SIX SIGMA- SIX SIGMA problem solving- SIX SIGMA	ples-l	FME	A me	thod-
DESIGN OF EXPERIMENTS Importance of Experiments, Experimental Strategies, Basic principles of Design, Terminology,	<u> </u>	X SIGMA and lean production –Lean SIX SIGMA and services				
	DESIGN OF EX Importance of Exp	periments, Experimental Strategies, Basic principles of Design, T				9
- Completely Randomized design, Randomized Block design, Statistical Analysis, Multifate experiments - Two and three factor full Factorial experiments, 2K factorial Experiments, Confound and Blocking designs, Fractional factorial design, Taguchi's approach - Steps in experimentation, De using Orthogonal Arrays, Data Analysis, Robust Design- Control and Noise factors, S/N ratios.	experiments - Tw and Blocking desi	o and three factor full Factorial experiments, 2K factorial Exp igns, Fractional factorial design, Taguchi'sapproach - Steps in ex-	erime xperin	nts, C nenta	Confo tion,	ounding
UNIT - V Lecture Hrs: 09	UNIT - V		Lect	ure H	<u>Irs:</u> 0	9

M.TECH. IN MACHINE DESIGN COURSE STRUCTURE & SYLLABI

STATISTICAL CONSIDERATION AND RELIABILITY

Frequency distributions and Histograms- Run charts –stem and leaf plots- Pareto diagrams-Cause and Effect diagrams-Box plots- Probability distribution-Statistical Process control–Scatter diagrams –Multivariable charts –Matrix plots and 3-D plots.- Reliability-Survival and Failure-Series and parallel systems-Mean time between failure-Weibull distribution

Textbooks:

- 1. Dieter, George E., "Engineering Design A Materials and Processing Approach", McGraw Hill, International Editions, Singapore, 2000.
- 2. Product Design Techniques in Reverse Engineering and New Product Development, KEVIN OTTO & KRISTIN WOOD, Pearson Education (LPE), 2001.
- 3. Product Design And Development, KARL T. ULRICH, STEVEN D. EPPINGER, TATA Mc GRAW-HILL- 3rd Edition, 2003.

Reference Books:

- 1. The Management and control of Quality-6th edition-James R. Evens, William M Lindsay Pub:son south-western(www.swlearning.com)
- 2. Fundamentals of Quality control and improvement 2nd edition, AMITAVA MITRA, Pearson Education Asia, 2002.
- 3. Montgomery, D.C., Design and Analysis of experiments, John Wiley and Sons, 2003.
- 4. Phillip J.Rose, Taguchi techniques for quality engineering, McGraw Hill, 1996.

Online Learning Resources:

1.https://www.youtube.com/watch?v=uQTUXGeuuuY

2.http://home.iitk.ac.in/~shalab/course2.htm

3.https://nptel.ac.in/courses/111/104/111104075/

4.https://www.youtube.com/watch?v=TBuFo6My6Pc

5.https://www.youtube.com/watch?v=UN206cSaF0k

6.https://www.youtube.com/watch?v=sIR11xWrViY

M.TECH. IN MACHINE DESIGN COURSE STRUCTURE & SYLLABI

Course Code	DESIGN OF HYDRAULIC AND PNEUMATIC	L	Т	Р	С
21D15301b	SYSTEMS (PE-V)	3	0	0	3
	Semester		IJ	Ι	
~ ~ ~ ~ ~					
Course Objective		<u> </u>	-		
	will understand the methodology of basic and advanced de	sign of	f pneui	natics	and
hydraulic Students	s systems. get knowledge on the need, use and application of fluid power.				
	s (CO): Student will be				
	o industrial design that lead to automation.	1			
• Able to II UNIT – I	npartknowledge on the science, use and application of hydraulics	Lecture			
	IC SYSTEMS AND HYDRAULIC ACTUATORS	Lecture	HIS:09		
		omiation	Lincon	and	
	Generators – Selection and specification of pumps, pump charact – selection, specification and characteristics.	eristics.	Linear	and	
•					
UNIT – II		Lecture	Hrs: 09)	
	REGULATION ELEMENTS	_			
Pressure - directio	n and flow control valves - relief valves, non-return and safety va	alves -a	ctuatior	n systen	18.
UNIT – III		Lecture	Hrs: 09	ð	
HYDRAULIC C					
	ick return, sequencing, synchronizing circuits - accumulator ci				
	ydraulic milling machine - grinding, planning, copying, - for	klift, ea	orth mo	ver cir	cuits-
	on of components - safety and emergency mandrels.				
UNIT – IV		Lecture	Hrs: 09)	
	YSTEMS AND CIRCUITS			<u>.</u>	
	nentals - control elements, position and pressure sensing - logic c				
0	modules and these integration - sequential circuits - cascade me	thods -	mappin	g metho	ods
- step counter met	hod - compound circuit design - combination circuit design.				
UNIT – V		Lecture	Hrs: 09	Ð	
	N, MAINTENANCE AND SPECIAL CIRCUITS				
	nents- selection of components - design calculations - application				
pneumatic circuits	s - use of microprocessors for sequencing - PLC, Low cost autom	ation - 1	Robotic	circuit	s.
Textbooks:					
	"Hydraulic and Pneumatics" (HB), Jaico Publishing House, 199	9.			
	Pneumatic and Hydraulic Systems ", Butterworth –Heinemann, I				
Reference Books					
	spossito, "Fluid Power with Applications", Prentice Hall, 1980.				
•	A. Pease and John J. Pippenger, "Basic fluid power", Prentice Ha	11, 1987			
	1ga Sundaram, "Hydraulic and Pneumatic Controls: Understandin			S.Chano	1
	ok publishers, New Delhi, 2006 (Reprint 2009).	-			
Online Learning					
A A	n/courses/112/103/112103249/				
A A	n/courses/112/106/112106175/	0.1 10			
A A	n/content/storage2/courses/112106175/Module%201/Lecture%2	JI.pdf			

4.https://www.vidyarthiplus.com/vp/attachment.php?aid=18972 5.https://snscourseware.org/snscenew/notes.php?cw=CW_5e27ec3b0457a

M.TECH. IN MACHINE DESIGN COURSE STRUCTURE & SYLLABI

Course Code	APPLIED ENGINEERING ACOUSTICS	L	Т	Р	С
21D15301c	Program Elective Course – V	3	0	0	3
	Semester		II	Ι	
Course Objective					
	t knowledge on the fundamentals of acoustics, its characteri				n in
	nedia, usage of sound measuring instruments and the various sou	nd cont	rol met	nods.	
Course Outcome	s (CO): Student will be				
engineeri					
in the eng	nd working principle of sound measuring equipments and different gineering field.	nt ways	of acou	istic co	ntrol
UNIT – I		Lecture	Hrs:09		
BASIC CONCE	PTS OF ACOUSTICS				
Scope of Acoustic	s - Sound pressure - Sound intensity - Sound power level Sound	power			
	Alteration of wave paths –Measurement of sound waves – sound				
– Sound fields – I	nterference - Standing waves - Acoustic energy density and inter	nsity –S	pecific	acousti	c
impedance.					
UNIT – II		lecture	Hrs: 09)	
	STICS OF SOUND		III 5. 02	·	
One dimensional of plane progress	wave equation – Solution of 1D wave equation – Velocity in gas ive sound wave through a thin solid rod – Velocity of plane was propagation along a string stretched under tension – Wave equation	ave in a	a bulk (of solid	
UNIT – III			Hrs: 09		
	N PHENOMENA		1115. 02		
Changes in media	a – Transmission from one fluid medium to another, normal inc				
UNIT – IV		lecture	Hrs: 09)	
	N TO THE ASSESSMENT AND MEASUREMENT OF SOU		1115. 02		
Introduction – De pressure level – E perceived noise le	cibel scale for the measurement of sound power – Sound level me qual Loudness contours – Perceived noisiness – Loudness, Loudr vel – Equivalent sound level – Frequency and Amplitude measurement.	eter – W			
UNIT – V		Lecture	Hrs: 09)	
	ource, path, receiver – Noise control by acoustical treatment – M olved – Determination of sound power and sound power level – No			– Туре	es
Textbooks:					
	Kinsler, Austin R. Frey, "Fundamentals of Acoustics "– John Wil	ey andS	ons Inc	••,	
2. Bies, David, A	and Hansen, Colin H., "Engineering Noise Control – Theory and n-Hall, Second Edition, 1996	lPractic	e", E ai	nd FN	
Reference Books					

1.Hansen C.H. and Snyder, S.D., "Active Control of Sound and Vibration", E and FNSpon, London 1996.

M.TECH. IN MACHINE DESIGN COURSE STRUCTURE & SYLLABI

Online Learning Resources:

1.https://nptel.ac.in/courses/112/104/112104212/

2.https://en.wikipedia.org/wiki/Acoustical_engineering

3.https://en.wikibooks.org/wiki/Engineering_Acoustics

4.https://youtu.be/W5EzDbTK1OY

5.https://youtu.be/YlEkwNmdCoM

6.https://nptel.ac.in/courses/112/104/112104026/

> M.TECH. IN MACHINE DESIGN COURSE STRUCTURE & SYLLABI

AUDIT COURSE-I

Course Code	ENGLISH FOR RESEARCH PAPER WRITING	L	Т	P	C
21DAC101a		2	0	0	0
	Semester	•		I	
21DAC101a 2 0 0 Semester 1 Course Objectives: This course will enable students: • Understand the essentials of writing skills and their level of readability • Learn about what to write in each section • Ensure qualitative presentation with linguistic accuracy Course Outcomes (CO): Student will be able to • Understand the significance of writing skills and the level of readability • Analyze and write title, abstract, different sections in research paper • Develop the skills needed while writing a research paper • Develop the skills needed while writing a research paper UNIT • I Lecture Hrs:10 10/verview of a Research Paper - Planning and Preparation- Word Order- Useful Phrases - Breaki up Long Sentences-Structuring Paragraphs and Sentences-Being Concise and Removing Redunda -Avoiding Ambiguity Lecture Hrs:10 UNIT • II Lecture Hrs:10 Introducing Review of the Literature – Methodology - Analysis of the Data-Findings - Discussion Conclusions-Recommendations. Lecture Hrs UNIT • V Lecture Hrs Appropriate language to formulate Methodology, incorporate Results, put forth Arguments and					
Course Objective	es: This course will enable students:				
• Understar	d the essentials of writing skills and their level of readability				
Learn abo	ut what to write in each section				
• Ensure qu	alitative presentation with linguistic accuracy				
Course Outcome	s (CO): Student will be able to				
Understar	nd the significance of writing skills and the level of readability				
• Analyze a	nd write title, abstract, different sections in research paper				
 Develop t 	he skills needed while writing a research paper				
		oving	g Red	unda	ncy
				- m	
Highlight Finding	s- Hedging and Criticizing, Paraphrasing and Plagiarism, Cauter	izatio	n		
UNIT - III	I	Lectur	e Hrs	s:10	
Introducing Revie	w of the Literature - Methodology - Analysis of the Data-Findin	gs - E	Discus	ssion	-
	ommendations.				
		Le	cture	Hrs:	9
Key skills needed	for writing a Title, Abstract, and Introduction				
					-
	age to formulate Methodology, incorporate Results, put forth Ar	gume	nts ai	nd dr	aw
		n Goo	gle F	300ks	5)
•	1 0		•	ess	
U		SIAM	l.		
6					
		ork Do	ordrea	cht	
Heidelber	g London, 2011				

Course Code		DISASTER MANAGEME	NT		T	P	C
21DAC101b				2	0	0	0
			Semester		_	[
Course Objectiv	ves: This cour	se will enable students:					
		critical understanding of	key concepts in	ı disas	ter risk	reduct	ion
	anitarian respo					C	
	•	sterriskreduction and humanit	arian response po	licy and	d practic	e from	
•	perspectives.						
	anunderstandi	ngofstandardsofhumanitarian	responseandpracti	calrelev	vanceins	specific	types
		estrengthsandweaknessesofdi	astermanagemen	tannroa	ches nla	nning	nd
		ent countries, particularly the					
UNIT - I		in countries, particularly the			untiles t	incy we	/K III
Introduction:							
	on,Factorsands	Significance;DifferenceBetwe	enHazardandDisa	ster:Na	turaland	l	
		, Nature, Types and Magnitu		,			
Disaster Prone A							
Study of Seismic	Zones; Areas	Prone to Floods and Drought	s, Landslides and	Avalan	ches; Ar	eas Pro	one to
		with Special Reference to Tsu					
UNIT - II		^				•	
Repercussions of	f Disasters and	Hazards:					
Economic Dama	ge, Loss of Hu	man and Animal Life, Destru	ction of Ecosyster	n. Natu	ral Disa	sters:	
Earthquakes, Vol	canisms,Cyclo	nes,Tsunamis,Floods,Drough	sandFamines,Lan	dslides	and Ava	alanche	es,
Man-made disast	ter: Nuclear R	eactor Meltdown, Industrial A	Accidents, Oil Slic	ks and	Spills, C	Outbrea	ks of
Disease and Epic	lemics, War ar	d Conflicts.					
UNIT - III							
Disaster Prepare							
		enomena Triggering ADisast					
	U	Meteorological and Other Ag	gencies, Media Re	eports:	Governn	nental	and
Community Prep	paredness.						
UNIT - IV							
Risk Assessment					_		
		Risk Reduction, Global and					
		GlobalCo-OperationinRiskAs	sessmentand Warr	ung, Pe	ople's P	'articip	ation
in Risk Assessme	ent. Strategies	for Survival.					
UNIT - V							
Disaster Mitigati			Tree del M'd'	day Dr			
v .	•	of Disaster Mitigation, Emergin	• •		uctural		
5		Aitigation, Programs of Disas	ter winugation in I	nuia.			
Suggested Read		ing atom Managementin In 1'- D		and at -	tagica		
$\begin{array}{ccc} 1. & K.Nishit \\ 2. & \text{``New F} \end{array}$		visasterManagementinIndia:P	erspectives, issues	anustra	legies		
	2	epEt.Al.(Eds.),"DisasterMiti	ntionEvnorionaa	AndDa	flootion	o" Dror	tionU
	ia, New Delhi.	epet.AI.(Eus.), Disasterivitti	zationExperiences	MIUKE	nection	s,riei	шеепа
	· ·	inistrationAndManagementT	extAndCaseStudia	es" Dee	n&Deer	n	
	ion Pvt. Ltd., N	•		, ,Dee	parter		
i uuncat	1011 I VI. LIU., I						

Course Code	SANSKRITFOR TECHNICAL KNOWLEDGE	L	Т	P	С
21DAC101c		2	0	0	0
	Semester	Ι			
Course Objective	es: This course will enable students:				
-	vorking knowledge in illustrious Sanskrit, the scientific lang	uage in	the wo	rld	
Ũ	of Sanskrit to improve brain functioning				
Learning power	ofSanskrittodevelopthelogicinmathematics,science&othersul	ojects ei	nhancin	g the m	nemory
• The engin	eering scholars equipped with Sanskrit will be able to explo	re the h	uge		
	ge from ancientliterature		C		
	s (CO): Student will be able to				
Understar	nding basic Sanskrit language				
	anskrit literature about science & technology can be underst	ood			
	ogical language will help to develop logic in students				
UNIT - I					
Alphabets in Sans	krit,				
UNIT - II					
Past/Present/Futur	re Tense, Simple Sentences				
UNIT - III					
Order, Introductio	n of roots				
UNIT - IV					
Technical informa	tion about Sanskrit Literature				
UNIT - V					
Technical concept	s of Engineering-Electrical, Mechanical, Architecture, Math	ematics			
Suggested Reading	ng				
	m" –Dr. Vishwas, Sanskrit-Bharti Publication, New Delhi				
	If Sanskrit" Prathama Deeksha- VempatiKutumbshast	ri Rach	trivaSa	nekrit	
	Delhi Publication	11, 18451	uryasa	1151/11	
	is ScientificTradition" Suresh Soni, Ocean books (P) Ltd.,N	ew Dell	ni		
S. man 5 GIOIIO					

> M.TECH. IN MACHINE DESIGN COURSE STRUCTURE & SYLLABI

AUDIT COURSE-II

Course Code		PEDAGOGY STUDIES	L	T	P	C
21DAC201a		Semester	2 II	0	0	0
		Semester	11			
Course Objecti	ves: This cour	se will enable students:				
	•	ceonthereviewtopictoinformprogrammedesigna	ndpolic	y makir	ng under	rtaken
		ncies and researchers.				
-		ce gaps to guide the development.				
	· /	lent will be able to				
	s will be able to					
Whatped countrie		icesarebeingusedbyteachersinformalandinforma	alclassr	ooms in	develop	ping
• What is	the evidence of	n the effectiveness of these pedagogical practic	es, in w	vhat		
		hat population of learners?				
Howcan	teachereducati	on(curriculumandpracticum)andtheschoolcurric	culuma	nd guida	ance ma	terial
best sup	port effective j	pedagogy?		-		
UNIT - I						
		: Aims and rationale, Policy back ground, Conce	.			
•••		g,Curriculum,Teachereducation.Conceptualfram	nework	,Researc	ch quest	ions.
Overview of me	thodology and	Searching.				
UNIT - II						
		al practices are being used by teachers in forma	l and i	nformal	classro	oms
in developing co	untries. Curric	ulum, Teacher education.				
UNIT - III						
		pedagogicalpractices, Methodology for the indept				en t of
		her education (curriculumandpracticum) and the				
		t effective pedagogy? Theory of change. Strengt				
		ical practices. Pedagogic theory and pedagogica	l appro	aches. T	Teachers	5'
attitudes and bel	iefs and Pedag	ogic strategies.				
UNIT - IV				~		
		nment with classroom practices and follow-up s	upport,	Peer su	pport,	
Support from the		culumandassessment, Barrierstolearning: limited	******	accord la		
sizes	lillinuliity.Cull	conumandassessment, Barrierstorearning.minited	resourc	esand la	inge chas	55
UNIT - V						
	dfuturedirectio	ns:Researchdesign,Contexts,Pedagogy,Teachere	ducatio	n		
		issemination and research impact.	Juucun	,		
Suggested Read						
00		01)ClassroominteractioninKenyanprimaryscho	ols.Cor	npare.		
31 (2): 2		, , , , , , , , , , , , , , , , , , ,	,	1 ,		
		cularreforminschools:Theimportanceofevaluati	on,Jour	nalof		
		5 (3): 361-379.				
4. Akyeam	1pongK(2003)	Teacher training in Ghana - does it count? Mult	i-site te	eachered	lucation	ı
		TER) country report 1. London: DFID.				
		erK, PryorJ, Westbrook J (2013)Improving tead				
		Africa: Does teacherpreparation count?Internation	onal Jou	ırnal Ed	ucation	al
Develop	oment, 33 (3): 2	272–282.				

- Alexander RJ(2001) Culture and pedagogy: International comparisons in primary education. Oxford and Boston: Blackwell. Chavan M (2003)ReadIndia: A mass scale, rapid, 'learning to read'campaign.
- 7. www.pratham.org/images/resource%20working%20paper%202.pdf.

Course Code STRESSMANAGEMENT BY YOGA	L	Т	P	C
21DAC201b	2	0	0	0
Semester		Ι	Ι	
Course Objectives: This course will enable students:				
• To achieve overall health of body and mind				
• To overcome stres				
Course Outcomes (CO): Student will be able to				
• Develop healthy mind in a healthy body thus improving social health	also			
Improve efficiency				
UNIT - I				
Definitions of Eight parts of yog.(Ashtanga)				
UNIT - II				
Yam and Niyam.				
UNIT - III				
Do`sand Don't'sin life.				
i) Ahinsa, satya, astheya, bramhacharyaand aparigrahaii) Shaucha, santosh, tapa, sw	wadhya	y,ishwa	rpranidl	nan
UNIT - IV				
Asan and Pranayam				
UNIT - V				
i)Variousyogposesand theirbenefitsformind & body				
ii)Regularizationofbreathingtechniques and its effects-Types of pranayam				
Suggested Reading				
1. 'Yogic Asanas for Group Tarining-Part-I": Janardan Swami Yogabhyasi Mand				
2."Rajayogaor conquering the Internal Nature" by Swami Vivekananda	a, Adv	aita		
Ashrama (Publication Department), Kolkata				

Course Code	PERSONALITY DEVELOPMENT THROUGHLI	FE	L	Т	Р	C
21DAC201c	ENLIGHTENMENTSKILLS		2	0	0	0
	Seme	ster]	I	
Course Objecti	ves: This course will enable students:					
• To learn	to achieve the highest goal happily					
	me a person with stable mind, pleasing personality and d	eterm	inatior	1		
 To awak 	xen wisdom in students					
Course Outcom	nes (CO): Student will be able to					
Studyof	Shrimad-Bhagwad-Geetawillhelpthestudentindeveloping	hispe	rsonali	tyand a	chieve t	he
highest	goal in life					
• The pers	son who has studied Geetawilllead the nation and manking	nd to p	peace a	nd pros	perity	
Study of	f Neetishatakam will help in developing versatile persona	lity o	f stude	nts		
UNIT - I						
Neetisatakam- H	lolistic development of personality					
Verses-19,20,21	,22(wisdom)					
Verses-29,31,32	(pride &heroism)					
Verses-26,28,63	,65(virtue)					
UNIT - II						
	lolistic development of personality					
Verses-52,53,59						
Verses-71,73,75	,78(do's)					
UNIT - III						
	to day work and duties.					
	dGeeta:Chapter2-Verses41,47,48,					
	13,21,27,35,Chapter6-Verses5,13,17,23,35,					
Chapter18-Verse	es45,46,48.	—				
UNIT - IV						
Statements of ba						
	dGeeta:Chapter2-Verses 56,62,68					
	es13,14,15,16,17,18					
	olemodel. Shrimad Bhagwad Geeta:	<u> </u>				
UNIT - V	12 01					
*	17,Chapter3-Verses36,37,42,					
Chapter 4-Verses						
Chapter18–Vers						
Suggested Read		otical	Jonart	mant)	-	
I. SrimadBhaga Kolkata	wadGita"bySwamiSwarupanandaAdvaitaAshram(Public	ationl	Jepartr	nent),		
	hraa Satakam (Niti aringar vairagua) hu D.Coningth I) ochte	ivoCon	alzrit		
	hree Satakam (Niti-sringar-vairagya) by P.Gopinath, F	asntr	iyaSan	SKIII		
Sansthanam,	New Defill.					

> M.TECH. IN MACHINE DESIGN COURSE STRUCTURE & SYLLABI

OPEN ELECTIVE

Course Code	BUSINESS ANALYTICS	L	Т	Р	С
21DOE301c		3	0	0	3
	Semester			III	
Course Objectives					
	bjective of this course is to give the student a comprehensive under	rstan	ding	of	
 business an 	alytics methods.				
	(CO): Student will be able to				
	ill demonstrate knowledge of data analytics.				
	ill demonstrate the ability of think critically in making decisions ba	ised (on		
	pep analytics.				
	ill demonstrate the ability to use technical skills in predicative and				
	e modeling to support business decision-making.				
	ill demonstrate the ability to translate data into clear, actionable ins	-			
UNIT - I			ture		
•	Overview of Business Analysis, Overview of Requirements, Role	of th	e Bu	siness	;
Analyst.					
Stakeholders: the pr	roject team, management, and the front line, Handling Stakeholder	Con	flicts		
UNIT - II				Hrs:	
Life Cycles: System	ns Development Life Cycles, Project Life Cycles, Product Life Cyc	cles,	Requ	iirem	ent
Life Cycles.					
UNIT - III			ture		
	ents: Overview of Requirements, Attributes of Good Requirements				
	uirement Sources, Gathering Requirements from Stakeholders, Con				ments
	orming Requirements: Stakeholder Needs Analysis, Decomposition				
	ve Analysis, Gap Analysis, Notations (UML & BPMN), Flowcharts				
	Relationship Diagrams, State-Transition Diagrams, Data Flow Dia	gran	ns, U	se Ca	se
Modeling, Business	s Process Modeling				
UNIT - IV				Hrs:	
	nents: Presenting Requirements, Socializing Requirements and Ga				.ce,
Prioritizing Require	ements. Managing Requirements Assets: Change Control, Requirer	nents	s Too	ols	
UNIT - V		Lec	ture	Hrs:	
Recent Trands in: E	Embedded and colleborative business intelligence, Visual data reco	very.	Data	a	
Storytelling and Da		•			
Textbooks:					
1. Business Analysi	is by James Cadle et al.				
2. Project Managen	nent: The Managerial Process by Erik Larson and, Clifford Gray				
Reference Books:					
1. Business an	nalytics Principles, Concepts, and Applications by Marc J. Schnied	erjan	is, Da	ara G.	
Schniederja	ans, Christopher M. Starkey, Pearson FT Press.				
2. Business A	nalytics by James Evans, persons Education.				

M.TECH. IN MACHINE DESIGN COURSE STRUCTURE & SYLLABI INTEDNET OF THINCS (IOT)

Course Code	COURSE STRUCTURE & SYLLABI INTERNET OF THINGS (IOT)	L	Т	Р	C
	INTERNET OF THINGS (IOT)	L 3	1	P	C 3
21DOE301g	<u> </u>	3	- T	- TT	3
	Semester		L.	II	
Course Objective	ge Student will be able				
	es: Student will be able Fundamental concepts of IoT				
	tand roles of sensors in IoT				
	different protocols used for IoT design				
	iliar with data handling and analytics tools in IoT				
	e the role of big data, cloud computing and data analytics in a typ	ical L	oT er	istem	h
	s (CO): Student will be able to	icai i	01 5	ysten	1
	d the various concepts, terminologies and architecture of IoT sys	tems			
	rs and actuators for design of IoT.	cenno.			
	and apply various protocols for design of IoT systems				
	us techniques of data storage and analytics in IoT				
	id various applications of IoT				
	d APIs to connect IoT related technologies				
UNIT – I		Lect	ure I	Hrs:0	9
	oT: Introduction, Definitions & Characteristics of IoT, IoT Archi				
	of IoT, Enabling Technologies in IoT, History of IoT, About Thi			•	
	About the Internet in IoT, IoT frameworks, IoT and M2M			,	
UNIT – II	· · · · · · · · · · · · · · · · · · ·	Lect	ure I	Hrs: ()9
	: Definition, Types of Sensors, Types of Actuators, Examples an				
	rds: Arduino IDE and Board Types, RaspberriPi Development Ki				
	Wireless Sensor Networks: History and Context, The node, Connection				
Networking Node		2		,	
UNIT – III	,	Lect	ure I	Hrs: ()9
	ogies for IoT: WPAN Technologies for IoT: IEEE 802.15.4, Zigb				
Z-Wave, BLE, Ba		,		,	,
	s for IoT IPv6, 6LowPAN, RPL, REST, AMPQ, CoAP, MQTT.	Edge	conn	ectiv	ity
and protocols		U			2
UNIT – IV		Lect	ure I	Hrs: ()9
Data Handling& A	Analytics: Introduction, Bigdata, Types of data, Characteristics of	Big	lata.	Data	
	ogies, Flow of data, Data acquisition, Data Storage, Introduction t				
	ta Analytics, Types of Data analytics, Local Analytics, Cloud ana				
applications		5			
UNIT - V		Lect	ure I	Hrs: ()9
	T: Home Automation, Smart Cities, Energy, Retail Management,				
**	h and Lifestyle, Industrial IoT, Legal challenges, IoT design Ethi	0		, 	
Environmental Pro					
Textbooks:					
1.Hakima Chaouc	hi, — "The Internet of Things Connecting Objects to the Web" IS	SBN :	978	-1-	
84821-140-7, Wil	in, The internet of Things Connecting Objects to the Web Te				
		igs: K	ey		
Applications and l	ey Publications	gs: K	ey		
	ey Publications David Boswarthick, and Omar Elloumi, — "The Internet of Thin	-	-	Editic	on,
	ey Publications David Boswarthick, and Omar Elloumi, — "The Internet of Thin Protocols", WileyPublications	-	-	Editic	on,
3. Vijay Madisetti VPT, 2014.	ey Publications David Boswarthick, and Omar Elloumi, — "The Internet of Thin Protocols", WileyPublications	ach)",	, 1 st I	Editic	on,

M.TECH. IN MACHINE DESIGN COURSE STRUCTURE & SYLLABI

and Test", Application Note, 2016.

Reference Books:

1.Daniel Minoli, — "Building the Internet of Things with IPv6 and MIPv6: The Evolving World of M2M Communications", ISBN: 978-1-118-47347-4, Willy Publication

2.Pethuru Raj and Anupama C. Raman, "The Internet of Things: Enabling Technologies, Platforms, and Use Cases", CRC Press

Online Learning Resources:

https://onlinecourses.nptel.ac.in/noc17_cs22/course

http://www.cse.wustl.edu/~jain/cse570-15/ftp/iot_prot/index.html

Course Code	MECHATRONICS	L	Т	Р	С
21DOE301h		3	0	0	3
	Semester		IJ	Ι	
	0.1				
	ves: Student will be able				
	y fundamental concepts of Signal condition				
	erstand the concepts of precision mechanical systems				
	n different electronic interface subsystems				
• To be fa	miliar with microcontrollers overview.				
	erstand the concepts of programmable logic controllers				
Course Outcom	nes (CO): Student will be able to				
Underst	and the various concepts, terminologies of Signal condition				
Underst	and the basics electronic interface subsystems				
Underst	and and apply various precision mechanical systems				
Underst	and various applications of microcontrollers overview				
 Underst 	and the controlling of programmable logic and programmable more	tion.			
UNIT – I		Lect	ure H	Irs:09)
INTRODUCT	ON: Definition – Trends - Control Methods: Standalone, PC	Based	l (R	eal T	ime
	ms, Graphical User Interface, Simulation) - Applications: SPM,				
CIM.					
SIGNAL CON	DITIONING : Introduction – Hardware - Digital I/O, Anal	og i	nput	- A	DC,
resolution, sp	eed channels Filtering Noise using passive components - Res	istors	, cap	acito	rs -
Amplifying sign	nals using OP amps – Software - Digital Signal Processing – Low	v pas	s,hi	gh pa	ass ,
notch filtering.		_			
UNIT – II		Lect	ure H	Irs: 0	9
PRECISION N	MECHANICAL SYSTEMS : Pneumatic Actuation Systems -	Elec	tro-p	neum	atic
Actuation Syste	ms - Hydraulic Actuation Systems - Electro-hydraulic Actuation	Syst	ems	- Tin	ning
Belts – Ball Sc	rew and Nut - Linear Motion Guides - Linear Bearings - Harmo	nic T	ransı	nissi	on -
Bearings- Motor	r / Drive Selection.				
UNIT – III		Lect	ure H	Irs: 0	9
ELECTRONIC	C INTERFACE SUBSYSTEMS : TTL, CMOS interfacing - S	ensor	inter	facin	ıg –
	cing - solenoids, motors Isoation schemes- opto coupling, buffe				
	it breakers, over current sensing, resetable fuses, thermal dissipat				
- Bipolar transis					
ELECTROME	CHANICAL DRIVES : Relays and Solenoids - Stepper Mot	tors -	DC	brus	shed
motors - DC bi	ushless motors - DC servo motors - 4-quadrant servo drives, PW	/M's	- Pul	se W	idth
	ariable Frequency Drives, Vector Drives - Drive System load calcu				
UNIT – IV		Lect	ure H	Irs: 0	9
MICROCONT	ROLLERS OVERVIEW: 8051 Microcontroller, micro pro	cesso	or sti	uctui	е -
-	ng - Analog Interfacing - Digital to Analog Convertors - Analog to	Digi	tal Co	onver	tors
- Applications.	ng - Analog Interfacing - Digital to Analog Convertors - Analog to Programming –Assembly, C (LED Blinking, Voltage measurement	•			tors

M.TECH. IN MACHINE DESIGN COURSE STRUCTURE & SYLLABI

PROGRAMMABLE LOGIC CONTROLLERS : Basic Structure - Programming : Ladder diagram -Timers, Internal Relays and Counters - Shift Registers - Master and Jump Controls - Data Handling - Analog input / output - PLC Selection - Application.

PROGRAMMABLE MOTION CONTROLLERS : Introduction - System Transfer Function – Laplace transform and its application in analysing differential equation of a control system - Feedback Devices :Position , Velocity Sensors - Optical Incremental encoders - Proximity Sensors : Inductive , Capacitive ,

Textbooks:

1. A text book of Mechatronics by Er.R.K. RAJPUT ., S.CHAND publications

2. A text book of Mechatronics by Nitalgour Premchand Mahalik ., McGraw Hill publications

Reference Books:

1. A text book of Mechatronics by W.Bolton ., Pearson Publications